Last updated: 2020-08-26
Checks: 6 0
Knit directory: T1D_epitranscriptome/
This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190516)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: analysis/.Rhistory
Untracked files:
Untracked: data/m6A.batch.out.RData
Untracked: data/m6A.batchGender.out.RData
Unstaged changes:
Modified: analysis/Stim_human_islets.Rmd
Modified: analysis/T1D_patient.Rmd
Modified: analysis/_site.yml
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 0d46101 | scottzijiezhang | 2020-08-26 | wflow_publish(“analysis/coveragePlot.Rmd”) |
library(RADAR)
load("~/Rohit_T1D/stim_Patient_islets/stim_patient_RADAR.RData")
stim_patient_RADAR <- PrepCoveragePlot(stim_patient_RADAR)
library(ggsci)
plotGeneCov(stim_patient_RADAR, geneName = "ADAR", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("ADAR")
plotGeneCov(stim_patient_RADAR, geneName = "ADAR", libraryType = "opposite", ZoomIn = c(154607900, 154608224),adjustExprLevel = TRUE, center = "mean")+ggtitle("ADAR zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "CD14", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("CD14")
plotGeneCov(stim_patient_RADAR, geneName = "CD14", libraryType = "opposite", ZoomIn = c(140633131, 140633428),adjustExprLevel = TRUE, center = "mean")+ggtitle("CD14 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "CLU", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("CLU")
plotGeneCov(stim_patient_RADAR, geneName = "CLU", libraryType = "opposite", ZoomIn = c(27611562, 27611811),adjustExprLevel = TRUE, center = "mean")+ggtitle("CLU zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "CTSS", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("CTSS")
plotGeneCov(stim_patient_RADAR, geneName = "CTSS", libraryType = "opposite", ZoomIn = c(150730393, 150730642),adjustExprLevel = TRUE, center = "mean")+ggtitle("CTSS zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "DHX58", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("DHX58")
plotGeneCov(stim_patient_RADAR, geneName = "DHX58", libraryType = "opposite", ZoomIn = c(42101355, 42101604),adjustExprLevel = TRUE, center = "mean")+ggtitle("DHX58 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "EP300", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("EP300")
plotGeneCov(stim_patient_RADAR, geneName = "EP300", libraryType = "opposite", ZoomIn = c(41176692, 41177041),adjustExprLevel = TRUE, center = "mean")+ggtitle("EP300 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "GBP1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("GBP1")
plotGeneCov(stim_patient_RADAR, geneName = "GBP1", libraryType = "opposite", ZoomIn = c(89062955, 89063304),adjustExprLevel = TRUE, center = "mean")+ggtitle("GBP1 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "HIST1H2BD", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("HIST1H2BD")
plotGeneCov(stim_patient_RADAR, geneName = "HIST1H2BD", libraryType = "opposite", ZoomIn = c(26170862, 26171262),adjustExprLevel = TRUE, center = "mean")+ggtitle("HIST1H2BD zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "HIST2H2BE", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("HIST2H2BE")
plotGeneCov(stim_patient_RADAR, geneName = "HIST2H2BE", libraryType = "opposite", ZoomIn = c(149886038, 149886287),adjustExprLevel = TRUE, center = "mean")+ggtitle("HIST2H2BE zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "IFI6", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("IFI6")
plotGeneCov(stim_patient_RADAR, geneName = "IFI6", libraryType = "opposite", ZoomIn = c(27672064, 27672313),adjustExprLevel = TRUE, center = "mean")+ggtitle("IFI6 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "IFIT2", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("IFIT2")
plotGeneCov(stim_patient_RADAR, geneName = "IFIT2", libraryType = "opposite", ZoomIn = c(89301799, 89302248),adjustExprLevel = TRUE, center = "mean")+ggtitle("IFIT2 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "IFIT5", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("IFIT5")
plotGeneCov(stim_patient_RADAR, geneName = "ISG20", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("ISG20")
plotGeneCov(stim_patient_RADAR, geneName = "ISG20", libraryType = "opposite", ZoomIn = c(88638702, 88639200),adjustExprLevel = TRUE, center = "mean")+ggtitle("ISG20 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "JAK2", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("JAK2")
plotGeneCov(stim_patient_RADAR, geneName = "JAK2", libraryType = "opposite", ZoomIn = c(4985145, 4985594),adjustExprLevel = TRUE, center = "mean")+ggtitle("JAK2 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "MX1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("MX1")
plotGeneCov(stim_patient_RADAR, geneName = "MX1", libraryType = "opposite", ZoomIn = c(41427039, 41427488),adjustExprLevel = TRUE, center = "mean")+ggtitle("MX1 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "NMI", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("NMI")
plotGeneCov(stim_patient_RADAR, geneName = "NMI", libraryType = "opposite", ZoomIn = c(151282784, 151283033),adjustExprLevel = TRUE, center = "mean")+ggtitle("NMI zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "NR1D1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("NR1D1")
plotGeneCov(stim_patient_RADAR, geneName = "NR1D1", libraryType = "opposite", ZoomIn = c(40100526, 40100775),adjustExprLevel = TRUE, center = "mean")+ggtitle("NR1D1 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "OAS3", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("OAS3")
plotGeneCov(stim_patient_RADAR, geneName = "OAS3", libraryType = "opposite", ZoomIn = c(112938233, 112938682),adjustExprLevel = TRUE, center = "mean")+ggtitle("OAS3 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "OASL", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean", split = T)+ggtitle("OASL")
plotGeneCov(stim_patient_RADAR, geneName = "OASL", libraryType = "opposite", ZoomIn = c(121020342, 121020440),adjustExprLevel = TRUE, center = "mean")+ggtitle("OASL zoom in")
I think the data for this gene has something wrong. The coverage of IP looks like PCR duplicates…
plotGeneCov(stim_patient_RADAR, geneName = "PARP14", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("PARP14")
plotGeneCov(stim_patient_RADAR, geneName = "PARP14", libraryType = "opposite", ZoomIn = c(122680725,122681174),adjustExprLevel = TRUE, center = "mean")+ggtitle("PARP14 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "PIK3AP1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("PIK3AP1")
plotGeneCov(stim_patient_RADAR, geneName = "PIK3AP1", libraryType = "opposite", ZoomIn = c(96709726, 96710175),adjustExprLevel = TRUE, center = "mean")+ggtitle("PIK3AP1 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "PLSCR1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("PLSCR1")
plotGeneCov(stim_patient_RADAR, geneName = "PLSCR1", libraryType = "opposite", ZoomIn = c(146544396, 146544794),adjustExprLevel = TRUE, center = "mean")+ggtitle("PLSCR1 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "PML", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("PML")
plotGeneCov(stim_patient_RADAR, geneName = "PML", libraryType = "opposite", ZoomIn = c(73994623, 73994972),adjustExprLevel = TRUE, center = "mean")+ggtitle("PML zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "RSAD2", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("RSAD2")
plotGeneCov(stim_patient_RADAR, geneName = "RSAD2", libraryType = "opposite", ZoomIn = c(6896154, 6896403),adjustExprLevel = TRUE, center = "mean")+ggtitle("RSAD2 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "SP100", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("SP100")
plotGeneCov(stim_patient_RADAR, geneName = "SP100", libraryType = "opposite", ZoomIn = c(230416633, 230417791),adjustExprLevel = TRUE, center = "mean")+ggtitle("SP100 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "SSC5D", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("SSC5D")
plotGeneCov(stim_patient_RADAR, geneName = "SSC5D", libraryType = "opposite", ZoomIn = c(55500585, 55500834),adjustExprLevel = TRUE, center = "mean")+ggtitle("SSC5D in")
plotGeneCov(stim_patient_RADAR, geneName = "TLR3", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("TLR3")
plotGeneCov(stim_patient_RADAR, geneName = "TLR3", libraryType = "opposite", ZoomIn = c(186076618, 186077067),adjustExprLevel = TRUE, center = "mean")+ggtitle("TLR3 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "TNFAIP3", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("TNFAIP3")
plotGeneCov(stim_patient_RADAR, geneName = "TNFAIP3", libraryType = "opposite", ZoomIn = c(137867188, 137867587),adjustExprLevel = TRUE, center = "mean")+ggtitle("TNFAIP3 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "TREX1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("TREX1")
plotGeneCov(stim_patient_RADAR, geneName = "TRIM56", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("TRIM56")
plotGeneCov(stim_patient_RADAR, geneName = "TRIM56", libraryType = "opposite", ZoomIn = c(101085389, 101085638 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("TRIM56 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "USP18", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("USP18")
plotGeneCov(stim_patient_RADAR, geneName = "USP18", libraryType = "opposite", ZoomIn = c(18149890, 18150189),adjustExprLevel = TRUE, center = "mean")+ggtitle("USP18 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "XAF1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("XAF1")
plotGeneCov(stim_patient_RADAR, geneName = "XAF1", libraryType = "opposite", ZoomIn = c(6774453, 6774902 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("XAF1 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "ZBTB1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("ZBTB1")
plotGeneCov(stim_patient_RADAR, geneName = "ZBTB1", libraryType = "opposite", ZoomIn = c(64522044, 64523000 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("ZBTB1 zoom in")
plotGeneCov(stim_patient_RADAR, geneName = "ZC3HAV1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("ZC3HAV1")
plotGeneCov(stim_patient_RADAR, geneName = "ZC3HAV1", libraryType = "opposite", ZoomIn = c(139060680, 139061179 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("ZC3HAV1 zoom in")
load("~/Rohit_T1D/stim_Patient_islets/T1D_patient_RADAR.RData")
T1D_patient_RADAR <- PrepCoveragePlot (T1D_patient_RADAR)
plotGeneCov(T1D_patient_RADAR, geneName = "EP300", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("EP300")
plotGeneCov(T1D_patient_RADAR, geneName = "EP300", libraryType = "opposite", ZoomIn = c(41092759, 41093008),adjustExprLevel = TRUE, center = "mean")+ggtitle("EP300 zoom in")
plotGeneCov(T1D_patient_RADAR, geneName = "IFIT2", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("IFIT2")
plotGeneCov(T1D_patient_RADAR, geneName = "IFIT2", libraryType = "opposite", ZoomIn = c(89307979, 89308228),adjustExprLevel = TRUE, center = "mean")+ggtitle("IFIT2 zoom in")
plotGeneCov(T1D_patient_RADAR, geneName = "JAK2", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("JAK2")
plotGeneCov(T1D_patient_RADAR, geneName = "JAK2", libraryType = "opposite", ZoomIn = c(5055585, 5055834 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("JAK2 zoom in")
plotGeneCov(T1D_patient_RADAR, geneName = "NMI", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("NMI")
plotGeneCov(T1D_patient_RADAR, geneName = "NMI", libraryType = "opposite", ZoomIn = c(149579860, 149580811 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("NMI zoom in")
This is a false discovery due to very low coverage.
plotGeneCov(T1D_patient_RADAR, geneName = "PARP14", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("PARP14")
plotGeneCov(T1D_patient_RADAR, geneName = "PARP14", libraryType = "opposite", ZoomIn = c(122727684, 122728033 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("PARP14 zoom in")
plotGeneCov(T1D_patient_RADAR, geneName = "TLR3", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("TLR3")
plotGeneCov(T1D_patient_RADAR, geneName = "TLR3", libraryType = "opposite", ZoomIn = c(186082782, 186083031 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("TLR3 zoom in")
plotGeneCov(T1D_patient_RADAR, geneName = "ZBTB1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("ZBTB1")
plotGeneCov(T1D_patient_RADAR, geneName = "ZBTB1", libraryType = "opposite", ZoomIn = c(64522044, 64522944 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("ZBTB1 zoom in")
plotGeneCov(T1D_patient_RADAR, geneName = "ZC3HAV1", libraryType = "opposite", adjustExprLevel = TRUE, center = "mean")+ggtitle("ZC3HAV1")
plotGeneCov(T1D_patient_RADAR, geneName = "ZC3HAV1", libraryType = "opposite", ZoomIn = c(139108922, 139109371 ),adjustExprLevel = TRUE, center = "mean")+ggtitle("ZC3HAV1 zoom in")
sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 17.10
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] ggsci_2.9 RADAR_0.2.3
[3] qvalue_2.14.1 RcppArmadillo_0.9.400.2.0
[5] Rcpp_1.0.1 RColorBrewer_1.1-2
[7] gplots_3.0.1.1 doParallel_1.0.14
[9] iterators_1.0.10 foreach_1.4.4
[11] ggplot2_3.1.1 Rsamtools_1.34.1
[13] Biostrings_2.50.2 XVector_0.22.0
[15] GenomicFeatures_1.34.8 AnnotationDbi_1.44.0
[17] Biobase_2.42.0 GenomicRanges_1.34.0
[19] GenomeInfoDb_1.18.2 IRanges_2.16.0
[21] S4Vectors_0.20.1 BiocGenerics_0.28.0
loaded via a namespace (and not attached):
[1] bitops_1.0-6 matrixStats_0.54.0
[3] fs_1.3.0 bit64_0.9-7
[5] progress_1.2.0 httr_1.4.0
[7] rprojroot_1.3-2 tools_3.5.3
[9] backports_1.1.4 R6_2.4.0
[11] rpart_4.1-13 KernSmooth_2.23-15
[13] Hmisc_4.2-0 DBI_1.0.0
[15] lazyeval_0.2.2 colorspace_1.4-1
[17] nnet_7.3-12 withr_2.1.2
[19] gridExtra_2.3 tidyselect_0.2.5
[21] prettyunits_1.0.2 DESeq2_1.22.2
[23] bit_1.1-14 compiler_3.5.3
[25] git2r_0.25.2 htmlTable_1.13.1
[27] DelayedArray_0.8.0 labeling_0.3
[29] rtracklayer_1.42.2 checkmate_1.9.1
[31] caTools_1.17.1.2 scales_1.0.0
[33] genefilter_1.64.0 stringr_1.4.0
[35] digest_0.6.18 foreign_0.8-71
[37] rmarkdown_1.12 base64enc_0.1-3
[39] pkgconfig_2.0.2 htmltools_0.3.6
[41] htmlwidgets_1.3 rlang_0.4.0
[43] rstudioapi_0.10 RSQLite_2.1.1
[45] BiocParallel_1.16.6 gtools_3.8.1
[47] acepack_1.4.1 dplyr_0.8.0.1
[49] RCurl_1.95-4.12 magrittr_1.5
[51] GenomeInfoDbData_1.2.0 Formula_1.2-3
[53] Matrix_1.2-17 munsell_0.5.0
[55] stringi_1.4.3 whisker_0.3-2
[57] yaml_2.2.0 SummarizedExperiment_1.12.0
[59] zlibbioc_1.28.0 plyr_1.8.4
[61] grid_3.5.3 blob_1.1.1
[63] gdata_2.18.0 crayon_1.3.4
[65] lattice_0.20-38 splines_3.5.3
[67] annotate_1.60.1 hms_0.4.2
[69] locfit_1.5-9.1 knitr_1.22
[71] pillar_1.3.1 geneplotter_1.60.0
[73] reshape2_1.4.3 codetools_0.2-16
[75] biomaRt_2.38.0 XML_3.98-1.19
[77] glue_1.3.1 evaluate_0.13
[79] latticeExtra_0.6-28 data.table_1.12.2
[81] gtable_0.3.0 purrr_0.3.2
[83] assertthat_0.2.1 xfun_0.6
[85] xtable_1.8-4 survival_2.44-1.1
[87] tibble_2.1.1 GenomicAlignments_1.18.1
[89] memoise_1.1.0 cluster_2.0.7-1
[91] workflowr_1.3.0