Last updated: 2020-08-26

Checks: 6 0

Knit directory: T1D_epitranscriptome/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190516) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    analysis/.Rhistory

Untracked files:
    Untracked:  data/m6A.batch.out.RData
    Untracked:  data/m6A.batchGender.out.RData

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html aa2d181 scottzijiezhang 2020-06-05 Build site.
Rmd c02ff29 scottzijiezhang 2020-06-05 wflow_publish(“Stim_mouse_islets.Rmd”)
html 514bc99 scottzijiezhang 2020-05-08 Build site.
Rmd 5133385 scottzijiezhang 2020-05-08 wflow_publish(“Stim_mouse_islets.Rmd”)
html ef437e3 scottzijiezhang 2020-05-07 Build site.
Rmd 4fb035a scottzijiezhang 2020-05-07 wflow_publish(“Stim_mouse_islets.Rmd”)
html 241dfaa scottzijiezhang 2020-05-07 Build site.
Rmd 546bce0 scottzijiezhang 2020-05-07 wflow_publish(“Stim_mouse_islets.Rmd”)
html 2739184 scottzijiezhang 2020-03-30 Build site.
Rmd 66578ab scottzijiezhang 2020-03-30 wflow_publish(“analysis/Stim_mouse_islets.Rmd”)
html e1b9592 scottzijiezhang 2020-03-30 Build site.
Rmd 69e49cb scottzijiezhang 2020-03-30 wflow_publish(“analysis/Stim_mouse_islets.Rmd”)

Introduction

Preprocessing and alignment

from <- list.files("~/Rohit_T1D/mouse_islet/lane1/")
tmp <- gsub("CHe-SZ-42S-","",from)
tmp <- gsub("_001","",tmp)
tmp <- gsub("_S\\d+","",tmp)

repl_ID <- match( gsub("_R[0-9].fastq.gz","",tmp), paste0("T",1:42) )

to <- paste0(
  c(
    paste0( c( paste0("Ctl_", 1:6 ), paste0( "BIRKO_", 1:3 ), paste0( "LIRKO_", 1:4 ), paste0( "Ctl_HFD_", 1:4  ), paste0( "LIRKO_HFD_", 1:4 ) ), ".input" ),
    paste0( c( paste0("Ctl_", 1:6 ), paste0( "BIRKO_", 1:3 ), paste0( "LIRKO_", 1:4 ), paste0( "Ctl_HFD_", 1:4  ), paste0( "LIRKO_HFD_", 1:4 ) ), ".m6A" )
  )[repl_ID],
   gsub("T\\d+","",tmp)
  )

file.rename(paste0("~/Rohit_T1D/mouse_islet/lane1/",from), paste0("~/Rohit_T1D/mouse_islet/lane1/",to) )

from <- list.files("~/Rohit_T1D/mouse_islet/lane2/")
tmp <- gsub("CHe-SZ-42S-","",from)
tmp <- gsub("_001","",tmp)
tmp <- gsub("_S\\d+","",tmp)

repl_ID <- match( gsub("_R[0-9].fastq.gz","",tmp), paste0("T",1:88) ) 

file.rename(paste0("~/Rohit_T1D/mouse_islet/lane2/",from), paste0("~/Rohit_T1D/mouse_islet/lane2/",to) )
data_name <- c(
    paste0( c( paste0("Ctl_", 1:6 ), paste0( "BIRKO_", 1:3 ), paste0( "LIRKO_", 1:4 ), paste0( "Ctl_HFD_", 1:4  ), paste0( "LIRKO_HFD_", 1:4 ) ), ".input" ),
    paste0( c( paste0("Ctl_", 1:6 ), paste0( "BIRKO_", 1:3 ), paste0( "LIRKO_", 1:4 ), paste0( "Ctl_HFD_", 1:4  ), paste0( "LIRKO_HFD_", 1:4 ) ), ".m6A" )
  )

filePath <- "~/Rohit_T1D/mouse_islet/lane1/"

cutadapt <- paste0(" -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT -o ",filePath,data_name,".trimmed.1.fastq.gz -p ",filePath,data_name,".trimmed.2.fastq.gz ",filePath,data_name,"_R1.fastq.gz ",filePath,data_name,"_R2.fastq.gz" )
for(i in cutadapt){
  system2(command = "cutadapt", args = i , wait = F)
}
cutFirstThree <- paste0(" -u -3 -U 3 -m 20 -o ",filePath,data_name,".allTrimmed.1.fastq.gz -p ",filePath,data_name,".allTrimmed.2.fastq.gz ",filePath,data_name,".trimmed.1.fastq.gz ",filePath,data_name,".trimmed.2.fastq.gz" )
for(i in cutFirstThree){
  system2(command = "cutadapt", args = i , wait = F)
}  
file.remove( c(paste0(filePath,data_name,".trimmed.1.fastq.gz"),paste0(filePath,data_name,".trimmed.2.fastq.gz")) )

filePath <- "~/Rohit_T1D/mouse_islet/lane2/"
cutadapt <- paste0(" -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT -o ",filePath,data_name,".trimmed.1.fastq.gz -p ",filePath,data_name,".trimmed.2.fastq.gz ",filePath,data_name,"_R1.fastq.gz ",filePath,data_name,"_R2.fastq.gz" )
for(i in cutadapt){
  system2(command = "cutadapt", args = i , wait = F)
}

cutFirstThree <- paste0(" -u -3 -U 3 -m 20 -o ",filePath,data_name,".allTrimmed.1.fastq.gz -p ",filePath,data_name,".allTrimmed.2.fastq.gz ",filePath,data_name,".trimmed.1.fastq.gz ",filePath,data_name,".trimmed.2.fastq.gz" )
for(i in cutFirstThree){
  system2(command = "cutadapt", args = i , wait = F)
}
file.remove( c(paste0(filePath,data_name,".trimmed.1.fastq.gz"),paste0(filePath,data_name,".trimmed.2.fastq.gz")) )
dir.create("~/Rohit_T1D/mouse_islet/alignment_summary")
dir.create( out_dir <- "~/Rohit_T1D/mouse_islet/bam_files/" )
dir.create( unalign <- "~/Rohit_T1D/mouse_islet/unaligned_reads/" )

filePath1 <- "~/Rohit_T1D/mouse_islet/lane1/"
filePath2 <- "~/Rohit_T1D/mouse_islet/lane2/"

hisat_align <- paste0(" -x ~/Database/genome/mm10/mm10_UCSC --known-splicesite-infile ~/Database/genome/mm10/hisat2_splice_sites.txt -k 1 --un-conc-gz ",unalign,data_name,".unalign --summary-file ~/Rohit_T1D/mouse_islet/alignment_summary/",data_name,".txt -p 20 --no-discordant -1 ",
                filePath1,data_name,".allTrimmed.1.fastq.gz,",filePath2,data_name,".allTrimmed.1.fastq.gz -2 ",filePath1,data_name,".allTrimmed.2.fastq.gz,",filePath2,data_name,".allTrimmed.2.fastq.gz |samtools view -bS | samtools sort -o ", out_dir,data_name,".bam ")

for(i in hisat_align){
  system2(command = "hisat2", args = i,wait = T )
}

Call m6A peaks across all samples for QC

load( "~/Rohit_T1D/mouse_islet/allSample_RADAR.RData")

MeRIPall <- MeRIPtools::callPeakBinomial( allSampleRADAR )
MeRIPall <- MeRIPtools::reportJointPeak(MeRIPall, joint_threshold = 4, threads = 20)

jointPeaks <- MeRIPtools::jointPeak(MeRIPall)

## motif analysis of joint peaks
write.table(jointPeaks, file = paste0("~/Rohit_T1D/mouse_islet/jointPeak_allsample.bed"),sep = "\t",row.names = F,col.names = F,quote = F)
system2(command = "bedtools", args = paste0("getfasta -fi ~/Database/genome/mm10/mm10_UCSC.fa -bed ~/Rohit_T1D/mouse_islet/jointPeak_allsample.bed -s -split > ~/Rohit_T1D/mouse_islet/jointPeak_allsample.fa ") )

system2(command = "findMotifs.pl", args = paste0("~/Rohit_T1D/mouse_islet/jointPeak_allsample.fa fasta ~/Rohit_T1D/mouse_islet/jointPeak_allsample_Homer2 -fasta ~/Database/transcriptome/backgroud_peaks/mm10_80bpRandomPeak.fa -len 5,6 -rna -p 20 -S 5 -noknown"),wait = F )
library(Logolas)
color_motif <- c( "orange", "blue", "red","green" )
for(i in 1:1){
  pwm.m <- t( read.table(paste0("~/Rohit_T1D/mouse_islet/jointPeak_allsample_Homer2/homerResults/motif",i,".motif"), header = F, comment.char = ">",col.names = c("A","C","G","U")) )
  motif_p <- sapply(1:1, function(x){
   strsplit( as.character( read.table(paste0("~/Rohit_T1D/mouse_islet/jointPeak_allsample_Homer2/homerResults/motif",x,".motif"),comment.char = "", nrows = 1)[,12]  ), split= ":")[[1]][4] 
})
  colnames(pwm.m) <- 1:ncol(pwm.m)

  try(logomaker(pwm.m ,type = "EDLogo",colors = color_motif,color_type = "per_row" ,logo_control =  list(pop_name = paste0("Joint peak motif",i,"  p-value:",motif_p[i])))
  )

}

Version Author Date
514bc99 scottzijiezhang 2020-05-08

The enriched motif confirms the m6A-seq specificity.

Run RADAR pipeline for differential methylation

library(RADAR)
samplename <-  c( paste0("Ctl_", 1:6 ), paste0( "BIRKO_", 1:3 ), paste0( "LIRKO_", 1:4 ), paste0( "Ctl_HFD_", 1:4  ), paste0( "LIRKO_HFD_", 1:4 ) )

allSampleRADAR <- countReads(samplenames = samplename,
                             gtf = "~/Database/genome/mm10/mm10_UCSC.gtf",
                             bamFolder = "~/Rohit_T1D/mouse_islet/bam_files/",
                             outputDir = "~/Rohit_T1D/mouse_islet/",
                             modification = "m6A",
                             binSize = 50,
                             paired = TRUE,
                             threads = 20
                             )

save(allSampleRADAR, file = "~/Rohit_T1D/mouse_islet/allSample_RADAR.RData")

Compare BIRKO to Control

load( "~/Rohit_T1D/mouse_islet/allSample_RADAR.RData")

BIRKO_sample <-   c( paste0("Ctl_", 1:6 ), paste0( "BIRKO_", 1:3 ) )

BIRKO_RADAR <- select( allSampleRADAR, BIRKO_sample )

BIRKO_RADAR <- normalizeLibrary( BIRKO_RADAR )
BIRKO_RADAR <- adjustExprLevel( BIRKO_RADAR )

variable( BIRKO_RADAR ) <- data.frame(genotype = c( rep( "Ctl", 6 ), rep( "BIRKO", 3 ) ), 
                                      batch = c( 0,0,0,1,1,1,0,0,1 )
                                      )
BIRKO_RADAR <- filterBins( BIRKO_RADAR )
save(BIRKO_RADAR, file = "~/Rohit_T1D/mouse_islet/BIRKO_RADAR.RData")

Check confounding factors

library(RADAR)
load(  "~/Rohit_T1D/mouse_islet/BIRKO_RADAR.RData" )

plotPCAfromMatrix(BIRKO_RADAR@ip_adjExpr_filtered, variable(BIRKO_RADAR)$genotype  )+scale_color_discrete(name = "Genotype")

Version Author Date
e1b9592 scottzijiezhang 2020-03-30
plotPCAfromMatrix(BIRKO_RADAR@ip_adjExpr_filtered, as.character( c( 0,0,0,1,1,1,0,0,1 ) ) )+scale_color_discrete(name = "Batch")

Version Author Date
e1b9592 scottzijiezhang 2020-03-30

Samples are well separated by genotype. Batch does not contribute to the variance much.

DM tests with RADAR

variable( BIRKO_RADAR ) <- data.frame(genotype = c( rep( "Ctl", 6 ), rep( "BIRKO", 3 ) ) 
                                      )

BIRKO_RADAR <- diffIP_parallel(BIRKO_RADAR, thread = 20)
#BIRKO_RADAR <- reportResult(BIRKO_RADAR, cutoff = 0.1, threads = 20)

save(BIRKO_RADAR, file = "~/Rohit_T1D/mouse_islet/BIRKO_RADAR.RData")
#write.table(results(BIRKO_RADAR), file = "~/Rohit_T1D/mouse_islet/BIRKO_diffPeaks_FDR0.1.xls", sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)

No differential m6A peaks were detected at FDR cutoff of 10% (neither do 20% FDR).

Compare LIRKO to Control

load( "~/Rohit_T1D/mouse_islet/allSample_RADAR.RData")

LIRKO_sample <-   c( paste0("Ctl_", 1:6 ), paste0( "LIRKO_", 1:4 ) )

LIRKO_RADAR <- select( allSampleRADAR, LIRKO_sample )

LIRKO_RADAR <- normalizeLibrary( LIRKO_RADAR )
LIRKO_RADAR <- adjustExprLevel( LIRKO_RADAR )

variable( LIRKO_RADAR ) <- data.frame(genotype = c( rep( "Ctl", 6 ), rep( "LIRKO", 4 ) ), 
                                      batch = c( 0,0,0,1,1,1,0,0,1,1 )
                                      )
LIRKO_RADAR <- filterBins( LIRKO_RADAR )
save(LIRKO_RADAR, file = "~/Rohit_T1D/mouse_islet/LIRKO_RADAR.RData")

Check confounding factors

library(RADAR)
load(  "~/Rohit_T1D/mouse_islet/LIRKO_RADAR.RData" )

plotPCAfromMatrix(LIRKO_RADAR@ip_adjExpr_filtered, variable(LIRKO_RADAR)$genotype  ) + scale_color_discrete(name = "Genotype")

Version Author Date
e1b9592 scottzijiezhang 2020-03-30
plotPCAfromMatrix(LIRKO_RADAR@ip_adjExpr_filtered, as.character( c( 0,0,0,1,1,1,0,0,1,1 ) ) )+scale_color_discrete(name = "Batch")

Version Author Date
e1b9592 scottzijiezhang 2020-03-30

Samples are well separated by genotype. Batch does not contribute to the variance much.

DM tests with RADAR

variable( LIRKO_RADAR ) <- data.frame(genotype = c( rep( "Ctl", 6 ), rep( "LIRKO", 4 ) ) 
                                      )

LIRKO_RADAR <- diffIP_parallel(LIRKO_RADAR, thread = 20)
LIRKO_RADAR <- reportResult(LIRKO_RADAR, cutoff = 0.1, threads = 20)

save(LIRKO_RADAR, file = "~/Rohit_T1D/mouse_islet/LIRKO_RADAR.RData")
write.table(results(LIRKO_RADAR), file = "~/Rohit_T1D/mouse_islet/LIRKO_diffPeaks_FDR0.1.xls", sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)

Differentially methylated m6A sites at FDR 10% threshold.

load("~/Rohit_T1D/mouse_islet/LIRKO_RADAR.RData")
LIRKO_result <- results(LIRKO_RADAR)
There are 4968 reported differential loci at FDR < 0.1 and logFoldChange > 0.5.
DT::datatable( LIRKO_result , rownames = FALSE )

Distribution of log fold change of significant DM sites

ggplot(LIRKO_result ,aes( x = logFC ) )+geom_histogram(color="black", fill="dark gray",bins = 30)+xlab("Log fold change")+ggtitle("LIRKO vs WT")+theme_bw() + ylab("Count")+ theme(panel.border = element_blank(), panel.grid.major = element_blank(),
                       panel.grid.minor = element_blank(), plot.title = element_text( size = 22,colour = "black", hjust = 0.5 ) , axis.line = element_line(colour = "black",size = 1),axis.ticks = element_line(colour = "black",size = 1), axis.text = element_text(size = 22,colour = "black"),axis.text.y = element_text(angle = 0) ,axis.title=element_text(size=22,family = "arial")
                       )

Version Author Date
514bc99 scottzijiezhang 2020-05-08

Spatial distribution of these DM sites

library(grid)
library(ggsci)
MeRIPtools::plotMetaGeneMulti( list("Hyper-methylated" = LIRKO_result[LIRKO_result$logFC>0,1:12], "Hypo-methylated" = LIRKO_result[LIRKO_result$logFC<0,1:12]), gtf = "~/Database/genome/mm10/mm10_UCSC.gtf" )
[1] "Converting BED12 to GRangesList"
[1] "It may take a few minutes"
[1] "Converting BED12 to GRangesList"
[1] "It may take a few minutes"
[1] "total 35119 transcripts extracted ..."
[1] "total 31408 transcripts left after ambiguity filter ..."
[1] "total 15627 mRNAs left after component length filter ..."
[1] "total 3280 ncRNAs left after ncRNA length filter ..."
[1] "Building Guitar Coordinates. It may take a few minutes ..."
[1] "Guitar Coordinates Built ..."
[1] "Using provided Guitar Coordinates"
[1] "resolving ambiguious features ..."
[1] "no figure saved ..."

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
514bc99 scottzijiezhang 2020-05-08
NOTE this function is a wrapper for R package "Guitar".
If you use the metaGene plot in publication, please cite the original reference:
Cui et al 2016 BioMed Research International 

The enriched motif learned from this DM sites set is a bit atypical.

KEGG pathway analysis of DMG

library(clusterProfiler)
eg.LIRKO <- bitr( unique(results(LIRKO_RADAR)$name), fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
There are 4968 reported differential loci at FDR < 0.1 and logFoldChange > 0.5.
KEGG_LIRKO <- enrichKEGG(eg.LIRKO$ENTREZID,organism = "mmu",pAdjustMethod = "fdr", pvalueCutoff = 0.1,minGSSize = 3)

emapplot(KEGG_LIRKO, vertex.label.font = 3)

Version Author Date
aa2d181 scottzijiezhang 2020-06-05

Intersect DMGs in LIRKO and DMGs in T2D patients.

T2D_DMpeaks <- read.table("~/Rohit_T2D/RADAR_diffPeaks_FDR0.05.xls", sep = "\t", header = TRUE)

convertMouseGeneList <- function(x){
 
require("biomaRt")
human = useMart("ensembl", dataset = "hsapiens_gene_ensembl")
mouse = useMart("ensembl", dataset = "mmusculus_gene_ensembl")
 
genesV2 = getLDS(attributes = c("mgi_symbol"), filters = "mgi_symbol", values = x , mart = mouse, attributesL = c("hgnc_symbol"), martL = human, uniqueRows=T)
 
return(genesV2)
}

MtoHmap <- convertMouseGeneList( unique( LIRKO_result$name ) ) 

LIRKO_result$HumanOrtholog <- MtoHmap$HGNC.symbol[ match(LIRKO_result$name, MtoHmap$MGI.symbol ) ]


library(Vennerable)

Vcommon_LIRKO_T2D <- Venn(list("DMGs in LIRKO" = unique(LIRKO_result$HumanOrtholog),"DMGs in T2D patient" = unique(T2D_DMpeaks$name) ) )
plot(Vcommon_LIRKO_T2D,doWeights=TRUE)

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
cat( paste0("Intersect DMGs in LIRKO and T2D patient:\n", paste(intersect( unique(LIRKO_result$HumanOrtholog), unique(T2D_DMpeaks$name) ), collapse = "\t" ) ) )
Intersect DMGs in LIRKO and T2D patient:
C10orf88    KIAA0100    C11orf95    KIAA1671    KIAA0895L   KIAA1109    KIAA0408    KIAA2026    C8orf48 C6orf132    C5orf51 ABCA7   ABCC5   ABCF1   ABCF3   ABHD8   ABL1    ACACA   ACIN1   ACTN4   ADCY6   ADGRL1  ADORA2A ADRA2A  ADRM1   AEBP2   AFF1    AFG3L2  AGAP1   AGAP3   AGRN    AGTPBP1 AGTRAP  AHCYL2  AHNAK   AIDA    AIMP1   AK1 AKAP1   AKAP11  AKAP12  AKAP13  AKAP8   AKAP9   AKIRIN2 AKT2    ALDOB   ALKBH7  AMBRA1  AMFR    ANKLE2  ANKRD11 ANKRD12 ANKRD17 ANKRD40 ANKRD6  ANXA4   AP2M1   AP4E1   APC APP ARAP3   ARFGAP1 ARFGEF3 ARHGAP12    ARHGAP21    ARHGAP35    ARHGEF1 ARHGEF12    ARHGEF17    ARHGEF18    ARHGEF5 ARID1A  ARID1B  ARIH1   ARL14   ARX ASB1    ASH1L   ASNSD1  ASPH    ASXL1   ASXL2   ATF7IP  ATG2A   ATG4D   ATMIN   ATP11A  ATP2A2  ATP6V1E1    ATP9A   ATRN    ATRNL1  ATXN7L3B    AUTS2   C5orf24 B3GNT3  C6orf89 C18orf32    BAHCC1  BAIAP2L1    BANP    BAX BAZ2A   BAZ2B   BBX BCL2L13 BCL9    BDP1    BEX1    BHLHB9  BHLHE41 BIRC6   BLOC1S4 BMS1    BOD1L1  BOLA3   BPTF    BRD3    BRD4    BRF2    BRPF1   BRSK1   BSN BTBD3   BTBD7   BTBD9   C1orf115    C1GALT1 C1QC    CABIN1  CACNA1A CACNA1D CACNA2D1    CACUL1  CAMK1   CAND1   CAPN2   CASC3   CASR    CAST    CBFA2T2 CBFA2T3 CBFB    CBR1    CBX6    CC2D1A  CCAR1   CCDC134 CCDC50  CCDC8   CCND1   CCND3   CCNT1   CCPG1   CCSER1  CD276   CD93    CD99L2  CDC34   CDC42BPA    CDC42BPB    CDC42BPG    CDC5L   CDCP1   CDK10   CDK11B  CDK13   CDK9    CDKN2C  CEBPZ   CELSR1  CELSR3  CENPB   CEP104  CEP164  CEP170  CEP170B CEP250  CFAP36  CFLAR   CGNL1   CHAMP1  CHCHD6  CHD2    CHD3    CHD5    CHD7    CHKA    CHM CHP1    CHST11  CHSY1   CLIC4   CLN5    CLSTN3  CLTB    CMTR1   CNNM3   CNOT3   CNTROB  COA5    COASY   COBL    COG4    COL15A1 COL4A2  CORO1C  COX20   CPD CPM CPSF7   CREBBP  CREBRF  CRYBG3  CSNK1G2 CTBP1   CTIF    CTR9    CTSZ    CUX1    CXXC4   CXXC5   CYB5RL  CYP2U1  C17orf80    DAB2IP  DACH1   DAPK1   DAZAP1  DCAF10  DCAF11  DCAF6   DCDC2   RSC1A1  DDIT4   DDX1    DDX21   DDX42   DDX51   DEDD    DEK DENR    DEPTOR  DGCR8   DGKZ    DHX30   DHX38   DHX8    DICER1  DIDO1   DIXDC1  DLG1    DLG3    DLG5    DMWD    DMXL1   DMXL2   DNAAF2  DNAJB11 DNAJC10 DNAJC11 DNAJC2  DNAJC21 DNAJC30 DNAJC8  DNM2    DNMT3A  DNTTIP2 DOT1L   DROSHA  DSE DST DTD2    DUSP16  DUSP18  DYNC1H1 DYNLL1  DYNLL2  DYRK1B  ECE1    ECHDC1  EFNB2   EFTUD2  EGFL7   EGLN1   EGLN2   EGR1    EHBP1   EHHADH  EIF2B5  EIF3CL  EIF4B   EIF4E3  EIF4EBP2    EIF4G3  EIF4H   EIF5    ELL2    ELOVL6  EMC1    EML5    ENAH    ENDOD1  ENY2    EP300   EP400   EPC1    EPS15L1 ERC1    ERLIN1  ERLIN2  ERN1    ESRRA   ETS1    EWSR1   EXD2    EXO5    EXOC4   EXOSC6  EXTL3   F8A1    FADD    FAM110A FAM114A2    FAM120B FAM120C FAM135B FAM193A FAM193B FAM199X FAM219B FAM222A FAM83G  FAM83H  FAN1    FARP1   FARP2   FBL FBXL14  FBXL16  FBXL17  FBXL19  FBXO21  FBXO38  FBXO42  FBXO45  FCHSD2  FDPS    FEM1A   FEM1B   FGD4    FGFR1   FIS1    FKBP15  FKBP5   FKBP9   FLII    FLNB    FMN2    FMNL2   FN3K    FNBP1L  FNDC3A  FNDC3B  FNIP1   FOS FOXJ3   FOXO6   FOXP4   FRMD4A  GAB2    GALNT2  GANAB   GBF1    GGA2    GGNBP2  GINM1   GIT1    GLG1    GLIS2   GLS GMEB2   GNA11   GNA13   GNAI2   GNAZ    GNG10   GNL3L   GNPTG   GOLGA3  GOLGA4  GOLGA7  GOLGB1  GOLM1   GOSR2   GPC1    GPR142  GPRIN1  GRIA2   GRPEL2  GSK3A   GSPT1   GSTO1   GTF2A1  GTF3C1  GTPBP1  HM13    H6PD    HAP1    HDAC6   HDGF    HDLBP   HELZ    HES6    HIBADH  HIP1R   HIRA    HIVEP2  HIVEP3  HMCES   HMG20A  HMGB2   HNF4A   HNRNPCL1    HNRNPM  HNRNPUL2-BSCL2  HOOK1   HOOK3   HPS3    HPS6    HRAS    HS1BP3  HS2ST1  HSPD1   HUWE1   ICE1    ID2 IDH2    IER5    IFFO1   IGF1R   IGF2    IGFBP5  IK  IKBKB   IL6ST   IMMT    INPP4A  INPPL1  INSM1   INTS3   IP6K2   IPO5    IQCC    IQGAP1  IRF1    IRF2BP2 IRS2    ISCA1   ITSN1   ITSN2   IWS1    JMJD1C  JMJD6   JMY KANK1   KAT5    KCNK3   KCTD2   KDM1A   KDM2A   KDM4A   KDM5A   KDM5C   KDR KHDRBS1 KHNYN   KIF13B  KIF16B  KIF1A   KIF1C   KIF3A   KIF3B   KIF5B   KIFC3   KL  KLC1    KLF10   KLF11   KLF3    KLF5    KLF9    KLHDC1  KLHDC8B KLHL24  KLHL36  KMT2A   KMT2B   KMT2C   KMT2D   KMT2E   KPNB1   KRBA1   KRT7    KSR2    LACTB   LAGE3   LAMC1   LARP1   LAS1L   LASP1   LBR LEMD3   LETM1   LIFR    LIG4    LIMA1   LMO7    LMTK3   LPIN1   LRIG2   LRP3    LRP5    LRP6    LRRC24  LRRC58  LRRC59  LRRFIP1 LRRFIP2 LSM10   LSM14A  LSR LTN1    LUC7L2  LUZP1   LYRM2   LYST    LZTR1   MACF1   MAFK    MAGED2  MAGI1   MAGT1   MAML3   MAN1B1  MAN1C1  MAP1A   MAP1B   MAP3K1  MAP3K10 MAP3K7  MAP7D1  MAPK3   MAPK8IP1    MAPT    MARK3   MAZ MBD5    MCC MCF2L   MCU MDC1    MDM2    MEAF6   MED13L  MED22   MEF2A   MEGF9   MEIS3   MEPCE   METRNL  METTL6  MEX3D   MGA MIB2    MICAL3  MICALL1 MID2    MINK1   MIOS    MLEC    MLLT6   MLXIP   MLXIPL  MNT MNX1    MOAP1   HSPE1-MOB4  MON1B   MORC3   MORF4L1 MPP5    MPRIP   MRPL19  MRPL40  MRPS23  MSH6    MSL2    MSMO1   MTCL1   MTCP1   MTMR3   MTUS1   MYBBP1A MYH10   MYH14   MYL6    MYO10   MYO18A  MYO5A   MYO5B   MYO6    MYO9A   N4BP1   N4BP2L2 NAA15   NAP1L1  NAP1L3  NAV1    NAV2    NBEA    NBL1    NCAPH2  NCOA3   NCOA6   NDOR1   NDUFB10 NDUFB3  NDUFS3  NEDD4L  NEFH    NES NEURL1  NF2 NFAT5   NFATC3  NFE2L1  NFKBIA  NGDN    NIN NIPBL   NKAP    NKIRAS2 NKTR    NLRX1   NOC2L   NOL6    NOL8    NOLC1   NOP14   NPEPPS  NR2F2   NRF1    NRIP1   NT5DC3  NUB1    NUCB2   NUDT3   NUMA1   NUTF2   NVL NYAP1   NYNRIN  OBSL1   OCLN    OGFR    OLFM1   ONECUT2 OPTN    ORMDL3  OS9 OSGIN1  OXR1    P4HA1   P4HB    PABPC4  PABPC5  PACSIN2 PAICS   PAK3    PAPOLA  PAPSS2  PARD3   PBRM1   PCDHB15 PCDHGA12    PCDHGA2 PCDHGA4 PCDHGB1 PCDHGB6 PCDHGC3 PCED1A  PCF11   PCLO    PCNT    PCSK7   PDCD11  PDCD4   PDE4D   PDE4DIP PDE5A   PDE8A   PDS5A   PDXDC1  PDZD4   PDZD8   PDZRN3  PEG10   PEG3    PET117  PEX14   PFDN6   PGBD5   PHACTR2 PHF14   PHF8    PHKG2   PHLPP1  PI4K2A  PICK1   PIGR    PIN1    PITHD1  PITPNM1 PKD1    PKD2    PKHD1   PKN1    PKP4    PLCB4   PLEC    PLEKHA6 PLEKHG3 PLEKHM2 PLS1    PLVAP   PLXNA2  PLXNA3  PMM2    PNPLA8  POLR3E  POM121  POR PPAN-P2RY11 PPARD   PPFIA1  PPIL2   PPIL4   PPP1CB  PPP1R10 PPP1R1A PPP1R26 PPP1R37 PPP1R9B PPP2R5B PPP2R5C PPP2R5D PPP2R5E PPP3CA  PRADC1  PRELID1 PRICKLE2    PRKAR2A PROX1   PRPF31  PRPF4B  PRPF6   PRPS1   PRR14   PRR14L  PRRC2B  PRRC2C  PRSS23  PRUNE2  PSMC5   PSMD2   PTP4A3  PTPN11  PTPN12  PTPN23  PTPRA   PTRH2   PURA    PURB    PWWP2A  QSOX1   RAB10   RAB11FIP1   RAB11FIP2   RAB43   RABGAP1L    RAI1    RAI14   RALBP1  RALGAPB RANGAP1 RAP1GAP2    RAP2B   RAPH1   RASSF3  RBM12   RBM12B  RBM14   RBM15B  RBM17   RBM26   RBM5    RBMXL1  RCAN2   RCAN3   RCN1    RDX REEP3   REPIN1  REST    REV3L   REXO1   RGL1    RGS9    RHOBTB2 RHOG    RIC8B   RING1   RIPK4   RLF RLIM    RMND5A  RNASET2 RNF145  RNF20   RNF217  RNF26   RNF31   RNF40   RNF7    ROCK2   ROR2    RPL36   RPL36A  RPRD1B  RPTOR   RRAGD   RRAS    RRBP1   RREB1   RRP12   RRP1B   RSPH3   RSRC1   RTN2    RUFY1   RUNDC3A RXRB    SAFB    SAMD4B  SAP30BP SAP30L  SART1   SASH1   SBNO1   SCAF1   SCAF11  SCAPER  SCLY    SCRT1   SDCCAG8 SDHA    SEC62   SEMA4B  SEMA6A  SEMA6D  SENP6   SERPING1    SETX    SF3A3   SF3B1   SFPQ    SFRP5   SH3GLB1 SH3KBP1 SH3PXD2A    SHROOM2 SHROOM3 SIPA1L3 SIRT7   SKIV2L  SLC10A7 SLC12A4 SLC12A7 SLC19A2 SLC25A1 SLC25A23    SLC25A28    SLC25A29    SLC25A38    SLC25A42    SLC25A46    SLC25A52    SLC30A4 SLC38A10    SLC39A3 SLC3A2  SLC44A2 SLC6A6  SLC7A5  SLK SLMAP   SLX4    SMAD7   SMARCA2 SMC1A   SMC3    SMC5    SMCR8   SMG7    SMIM12  SNAP29  SNAPC2  SNAPC3  SNAPC4  SNPH    SNRK    SNRNP70 SOBP    SOCS4   SOGA1   SOGA3   SON SOWAHC  SOX13   SP1 SPAG9   SPECC1  SPECC1L SPEG    SPEN    SPIN1   SPIRE1  SPTAN1  SPTBN1  SPTBN2  SPTY2D1 SQLE    SRCAP   SRF SRGAP1  SRRM1   SRRM2   SSBP3   SSTR3   STAG2   STIM1   STOX2   STRN3   STX6    STXBP5L SUB1    SUCO    SUPT5H  SUPT6H  SURF2   SYMPK   SYNE2   SYNGAP1 SYNPO   SYT7    SYTL1   TAB2    TACC1   TACC2   TADA2B  TANC1   TANC2   TAOK1   TAOK3   TBC1D10B    TBC1D15 TBC1D16 TBC1D8  TBCB    TBRG1   TBX3    TCEA1   TCEAL6  TCF20   TCF3    TEAD1   TELO2   TENM3   TERF2   TGS1    THEMIS2 TIMM10B TIMM44  TJAP1   TJP1    TJP2    TLE1    TLK1    TLN1    TM9SF4  TMCC2   TMED9   TMEM126A    TMEM184A    TMEM185B    TMEM222 TMEM30A TMEM63C TMEM80  TMEM8B  TMEM97  TMF1    TMOD2   TMPO    TMTC2   TNIP2   TNK2    TNKS1BP1    TNPO1   TNRC6A  TNRC6B  TNRC6C  TNS2    TOMM34  TOP1    TOP3A   TOR1A   TOR1AIP2    TPCN1   TPM1    TPR TRABD   TRAPPC10    TRAPPC5 TRIM2   TRIM25  TRIM41  TRIM56  TRIO    TRIOBP  TRIP11  TRIP12  TRIP4   TRMT12  TRMT6   TRPM3   TSC1    TSC22D1 TSC22D4 TSEN34  TSHZ1   TTBK2   TTC17   TTC22   TTC28   TTC3    TTC30B  TUFT1   TWSG1   TXLNA   TXLNG   TXNDC15 TXNRD1  U2SURP  UACA    UAP1L1  UBA5    UBAP2   UBASH3B UBE2D2  UBE2G2  UBE2O   UBE2Q1  UBE2Z   UBL3    UBN1    UBN2    UBR3    UBTF    UBXN10  UGGT1   UIMC1   UNC13B  UPF3A   UPF3B   URGCP   URI1    USH1C   USP1    USP16   USP51   USP8    USP9X   UTP14C  VAMP2   VEGFA   VEZF1   VPS18   VPS26B  VPS35   VPS36   VTI1A   VWA5B2  WAC WDR20   WDR43   WDR59   WDR81   WDR82   WIZ WNK1    WNK2    WSCD1   XBP1    XPC XPO6    XRN2    XYLT2   YKT6    YLPM1   YTHDF3  YY1 ZBTB1   ZBTB11  ZBTB18  ZBTB38  ZBTB41  ZBTB44  ZC3H10  ZC3H11A ZC3H4   ZCCHC18 ZCCHC2  ZCCHC3  ZDHHC14 ZFHX3   ZNF106  ZNF12   ZNF205  ZNF142  ZNF148  ZNF174  ZNF217  ZNF248  ZNF281  ZNF282  ZFP30   ZNF316  ZNF322  ZNF346  ZFP36L2 ZNF570  ZNF446  ZNF507  ZNF516  ZNF518A ZNF524  ZNF598  ZNF780A ZNF609  ZNF628  ZNF638  ZNF646  ZNF653  ZNF654  ZNF664  ZNF667  ZNF687  ZNF688  ZNF697  ZNF703  ZNF704  ZNF775  ZNF845  ZNF770  ZNF771  ZNF420  ZNF787  ZFP91   ZFR ZFX ZGPAT   ZHX1    ZKSCAN4 ZKSCAN7 ZMAT1   ZMAT5   ZMYM1   ZMYM4   ZMYND11 ZNFX1   ZSCAN12 ZSCAN21

KEGG pathway analysis of overlapping DMGs

eg.LIRKO_T2D <- bitr( intersect( unique( LIRKO_result$HumanOrtholog), unique(T2D_DMpeaks$name) ) , fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")

KEGGLIRKO_T2D <- enrichKEGG(eg.LIRKO_T2D$ENTREZID,organism = "hsa",pAdjustMethod = "fdr", pvalueCutoff = 0.1,minGSSize = 3)

dotplot(KEGGLIRKO_T2D, showCategory=20 )+theme(
                   panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 1),
                   axis.title.x=element_text(size=22, color = "black", hjust=0.5,family = "arial"),
                   axis.title.y=element_text(size=22, color = "black", vjust=0.4, angle=90,family = "arial"),
                   legend.title=element_text(size=15, color = "black"),legend.text = element_text(size = 20, color = "black",family = "arial"),
                   axis.text.x = element_text(size = 15,color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"))

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
emapplot(KEGGLIRKO_T2D, vertex.label.font = 3)

Version Author Date
aa2d181 scottzijiezhang 2020-06-05

Compare High fat diet to Control

load( "~/Rohit_T1D/mouse_islet/allSample_RADAR.RData")

HFD_sample <-   c( paste0("Ctl_", 1:6 ), paste0( "Ctl_HFD_", 1:4 ) )

HFD_RADAR <- select( allSampleRADAR, HFD_sample )

HFD_RADAR <- normalizeLibrary( HFD_RADAR )
HFD_RADAR <- adjustExprLevel( HFD_RADAR )

variable( HFD_RADAR ) <- data.frame(genotype = c( rep( "Ctl", 6 ), rep( "HFD", 4 ) ), 
                                      batch = c( 0,0,0,1,1,1,0,0,1,1 )
                                      )
HFD_RADAR <- filterBins( HFD_RADAR )
save(HFD_RADAR, file = "~/Rohit_T1D/mouse_islet/HFD_RADAR.RData")

Check confounding factors

library(RADAR)
load(  "~/Rohit_T1D/mouse_islet/HFD_RADAR.RData" )

plotPCAfromMatrix(HFD_RADAR@ip_adjExpr_filtered, variable(HFD_RADAR)$genotype  )+scale_color_discrete(name = "Genotype")

Version Author Date
e1b9592 scottzijiezhang 2020-03-30
plotPCAfromMatrix(HFD_RADAR@ip_adjExpr_filtered, as.character( c( 0,0,0,1,1,1,0,0,1,1 ) ) )+scale_color_discrete(name = "Batch")

Version Author Date
e1b9592 scottzijiezhang 2020-03-30

Samples are separated by genotype. Batch also contributed a bit to the variance. Therefore, we included batch as a covariate in this test.

DM tests with RADAR

HFD_RADAR <- diffIP_parallel(HFD_RADAR, thread = 20)
HFD_RADAR <- reportResult(HFD_RADAR, cutoff = 0.1, threads = 20)

save(HFD_RADAR, file = "~/Rohit_T1D/mouse_islet/HFD_RADAR.RData")
write.table(results(HFD_RADAR), file = "~/Rohit_T1D/mouse_islet/HFD_diffPeaks_FDR0.1.xls", sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)
load("~/Rohit_T1D/mouse_islet/HFD_RADAR.RData")
HFD_result <- results(HFD_RADAR)
There are 1257 reported differential loci at FDR < 0.1 and logFoldChange > 0.5.
DT::datatable( HFD_result , rownames = FALSE )

Distribution of log fold change of significant DM sites

ggplot( HFD_result ,aes( x = logFC ) )+geom_histogram(color="black", fill="dark gray",bins = 30)+xlab("Log fold change")+ggtitle("High fat diet vs Normal chow")+theme_bw() + ylab("Count")+ theme(panel.border = element_blank(), panel.grid.major = element_blank(),
                       panel.grid.minor = element_blank(), plot.title = element_text( size = 22,colour = "black", hjust = 0.5 ) , axis.line = element_line(colour = "black",size = 1),axis.ticks = element_line(colour = "black",size = 1), axis.text = element_text(size = 22,colour = "black"),axis.text.y = element_text(angle = 0) ,axis.title=element_text(size=22,family = "arial")
                       )

Version Author Date
514bc99 scottzijiezhang 2020-05-08

Spatial distribution of these DM sites

MeRIPtools::plotMetaGeneMulti( list("Hyper-methylated" = HFD_result[HFD_result$logFC>0,1:12], "Hypo-methylated" = HFD_result[HFD_result$logFC<0,1:12]), gtf = "~/Database/genome/mm10/mm10_UCSC.gtf" )
[1] "Converting BED12 to GRangesList"
[1] "It may take a few minutes"
[1] "Converting BED12 to GRangesList"
[1] "It may take a few minutes"
[1] "total 35119 transcripts extracted ..."
[1] "total 31408 transcripts left after ambiguity filter ..."
[1] "total 15627 mRNAs left after component length filter ..."
[1] "total 3280 ncRNAs left after ncRNA length filter ..."
[1] "Building Guitar Coordinates. It may take a few minutes ..."
[1] "Guitar Coordinates Built ..."
[1] "Using provided Guitar Coordinates"
[1] "resolving ambiguious features ..."
[1] "no figure saved ..."

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
514bc99 scottzijiezhang 2020-05-08
NOTE this function is a wrapper for R package "Guitar".
If you use the metaGene plot in publication, please cite the original reference:
Cui et al 2016 BioMed Research International 

####KEGG pathway analysis of DMG

eg.HFD <- bitr( unique(HFD_result$name), fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")

KEGG_HFD <- enrichKEGG(eg.HFD$ENTREZID,organism = "mmu",pAdjustMethod = "fdr", pvalueCutoff = 0.1,minGSSize = 3)

dotplot(KEGG_HFD)

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
514bc99 scottzijiezhang 2020-05-08
ef437e3 scottzijiezhang 2020-05-07

Genes included in some of these pathways

KEGG_HFD.df <- as.data.frame(KEGG_HFD)
KEGG_HFD.df$geneID <- unlist( lapply(strsplit(KEGG_HFD.df$geneID,"/"),function(x){ paste( bitr(x,fromType="ENTREZID", toType="SYMBOL",OrgDb="org.Mm.eg.db")$SYMBOL, collapse = "/")  }) )

DT::datatable( KEGG_HFD.df[,c("Description", "geneID")] , rownames = FALSE )

Compare High-fat-diet LIRKO vs. Normal chow WT

load( "~/Rohit_T1D/mouse_islet/allSample_RADAR.RData")

HFD_LIRKO_norWT_sample <-   c( paste0("Ctl_", 1:6 ), paste0( "LIRKO_HFD_", 1:4 ) )

HFD_LIRKO_norWT_RADAR <- select( allSampleRADAR, HFD_LIRKO_norWT_sample )

HFD_LIRKO_norWT_RADAR <- normalizeLibrary( HFD_LIRKO_norWT_RADAR )
HFD_LIRKO_norWT_RADAR <- adjustExprLevel( HFD_LIRKO_norWT_RADAR )

variable( HFD_LIRKO_norWT_RADAR ) <- data.frame(genotype = c( rep( "Ctl", 6 ), rep( "HFD_LIRKO", 4 ) ), 
                                      batch = c( 0,0,0,1,1,1,0,0,1,1 )
                                      )
HFD_LIRKO_norWT_RADAR <- filterBins( HFD_LIRKO_norWT_RADAR )
save(HFD_LIRKO_norWT_RADAR, file = "~/Rohit_T1D/mouse_islet/HFD_LIRKO_norWT_RADAR.RData")

Check confounding factors

library(RADAR)
load(  "~/Rohit_T1D/mouse_islet/HFD_LIRKO_norWT_RADAR.RData" )

plotPCAfromMatrix(HFD_LIRKO_norWT_RADAR@ip_adjExpr_filtered, variable(HFD_LIRKO_norWT_RADAR)$genotype  )+scale_color_discrete(name = "Genotype")

Version Author Date
241dfaa scottzijiezhang 2020-05-07
plotPCAfromMatrix(HFD_LIRKO_norWT_RADAR@ip_adjExpr_filtered, as.character( c( 0,0,0,1,1,1,0,0,1,1 ) ) )+scale_color_discrete(name = "Batch")

Version Author Date
241dfaa scottzijiezhang 2020-05-07

Samples are separated by genotype. Batch also contributed substantial portion to the variance. Therefore, we included batch as a covariate in this test.

DM tests with RADAR

HFD_LIRKO_norWT_RADAR <- diffIP_parallel(HFD_LIRKO_norWT_RADAR, thread = 20)
HFD_LIRKO_norWT_RADAR <- reportResult(HFD_LIRKO_norWT_RADAR, cutoff = 0.1, threads = 20)

save(HFD_LIRKO_norWT_RADAR, file = "~/Rohit_T1D/mouse_islet/HFD_LIRKO_norWT_RADAR.RData")
write.table(results(HFD_LIRKO_norWT_RADAR), file = "~/Rohit_T1D/mouse_islet/HFD_LIRKO_vs_normWT_diffPeaks_FDR0.1.xls", sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)
load("~/Rohit_T1D/mouse_islet/HFD_LIRKO_norWT_RADAR.RData")
HFD_LIRKO_norWT_result <- results(HFD_LIRKO_norWT_RADAR)
There are 1141 reported differential loci at FDR < 0.1 and logFoldChange > 0.5.
DT::datatable( HFD_LIRKO_norWT_result , rownames = FALSE )

Distribution of log fold change of significant DM sites

ggplot( HFD_LIRKO_norWT_result ,aes( x = logFC ) )+geom_histogram(color="black", fill="dark gray",bins = 30)+xlab("Log fold change")+ggtitle("LIRKO on high fat diet vs WT on normal chow")+theme_bw() + ylab("Count")+ theme(panel.border = element_blank(), panel.grid.major = element_blank(),
                       panel.grid.minor = element_blank(), plot.title = element_text( size = 22,colour = "black", hjust = 0.5 ) , axis.line = element_line(colour = "black",size = 1),axis.ticks = element_line(colour = "black",size = 1), axis.text = element_text(size = 22,colour = "black"),axis.text.y = element_text(angle = 0) ,axis.title=element_text(size=22,family = "arial")
                       )

Version Author Date
514bc99 scottzijiezhang 2020-05-08

Spatial distribution of these DM sites

MeRIPtools::plotMetaGeneMulti( list("Hyper-methylated" = HFD_LIRKO_norWT_result[HFD_LIRKO_norWT_result$logFC>0,1:12], "Hypo-methylated" = HFD_LIRKO_norWT_result[HFD_LIRKO_norWT_result$logFC<0,1:12]), gtf = "~/Database/genome/mm10/mm10_UCSC.gtf" )
[1] "Converting BED12 to GRangesList"
[1] "It may take a few minutes"
[1] "Converting BED12 to GRangesList"
[1] "It may take a few minutes"
[1] "total 35119 transcripts extracted ..."
[1] "total 31408 transcripts left after ambiguity filter ..."
[1] "total 15627 mRNAs left after component length filter ..."
[1] "total 3280 ncRNAs left after ncRNA length filter ..."
[1] "Building Guitar Coordinates. It may take a few minutes ..."
[1] "Guitar Coordinates Built ..."
[1] "Using provided Guitar Coordinates"
[1] "resolving ambiguious features ..."
[1] "no figure saved ..."

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
514bc99 scottzijiezhang 2020-05-08
NOTE this function is a wrapper for R package "Guitar".
If you use the metaGene plot in publication, please cite the original reference:
Cui et al 2016 BioMed Research International 

KEGG pathway analysis of DMG

eg.HFD_LIRKO_norWT <- bitr( unique(results(HFD_LIRKO_norWT_RADAR)$name), fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
There are 1141 reported differential loci at FDR < 0.1 and logFoldChange > 0.5.
KEGG_HFD_LIRKO_norWT <- enrichKEGG(eg.HFD_LIRKO_norWT$ENTREZID,organism = "mmu",pAdjustMethod = "fdr", pvalueCutoff = 0.1,minGSSize = 3)

dotplot(KEGG_HFD_LIRKO_norWT)+theme(
                   panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 1),
                   axis.title.x=element_text(size=22, color = "black", hjust=0.5,family = "arial"),
                   axis.title.y=element_text(size=22, color = "black", vjust=0.4, angle=90,family = "arial"),
                   legend.title=element_text(size=15, color = "black"),legend.text = element_text(size = 20, color = "black",family = "arial"),
                   axis.text.x = element_text(size = 15,color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"))

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
241dfaa scottzijiezhang 2020-05-07
emapplot(KEGG_HFD_LIRKO_norWT, vertex.label.font = 3)

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
514bc99 scottzijiezhang 2020-05-08
ef437e3 scottzijiezhang 2020-05-07

Genes included in some of these pathways

KEGG_HFD_LIRKO_norWT.df <- as.data.frame(KEGG_HFD_LIRKO_norWT)
KEGG_HFD_LIRKO_norWT.df$geneID <- unlist( lapply(strsplit(KEGG_HFD_LIRKO_norWT.df$geneID,"/"),function(x){ paste( bitr(x,fromType="ENTREZID", toType="SYMBOL",OrgDb="org.Mm.eg.db")$SYMBOL, collapse = "/")  }) )

DT::datatable( KEGG_HFD_LIRKO_norWT.df[c(1:8,10,12:15,17:19),c("Description", "geneID")] , rownames = FALSE)

Intersect DMGs in LIRKO_HFD and DMGs in T2D patients.

convertMouseGeneList <- function(x){
 
require("biomaRt")
human = useMart("ensembl", dataset = "hsapiens_gene_ensembl")
mouse = useMart("ensembl", dataset = "mmusculus_gene_ensembl")
 
genesV2 = getLDS(attributes = c("mgi_symbol"), filters = "mgi_symbol", values = x , mart = mouse, attributesL = c("hgnc_symbol"), martL = human, uniqueRows = T )
 
return(genesV2)
}

MtoHmap_LIRKO_HFD <- convertMouseGeneList( as.character( unique( HFD_LIRKO_norWT_result$name ) ) ) 

HFD_LIRKO_norWT_result$HumanOrtholog <- MtoHmap_LIRKO_HFD$HGNC.symbol[ match(HFD_LIRKO_norWT_result$name, MtoHmap_LIRKO_HFD$MGI.symbol ) ]


Vcommon_LIRKO_HFD_T2D <- Venn(list("DMGs in LIRKO_HFD" = unique(HFD_LIRKO_norWT_result$HumanOrtholog),"DMGs in T2D patient" = unique(T2D_DMpeaks$name) ) )
plot(Vcommon_LIRKO_HFD_T2D,doWeights=TRUE)

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
cat( paste0("Intersect DMGs in LIRKO w/ HFD and T2D patient:\n", paste(intersect( unique(HFD_LIRKO_norWT_result$HumanOrtholog), unique(T2D_DMpeaks$name) ), collapse = "\t" ) ) )
Intersect DMGs in LIRKO w/ HFD and T2D patient:
C10orf88    C7orf50 C6orf141    KIAA2026    ACHE    ACOT1   ACTN4   ADO ADRA2A  AHNAK   AKAP13  AKAP7   AKAP8   AKT2    ANKH    ANKRD40 ANKRD42 AP3D1   ARFGEF1 ARHGEF18    ARHGEF3 ARID1B  ARRDC4  ASAP1   ASH1L   ASPH    ASXL2   ATP2A2  ATP7A   AUTS2   AZGP1   BAIAP2L1    BCR BHLHB9  BICC1   BTBD3   C1GALT1 C2CD2L  CACNA1C CACUL1  CAMLG   CAPN2   CAST    CBX2    CCDC71L CCDC93  CD99L2  CDC42BPG    CDC42EP3    CDH1    CDIPT   CEBPD   CHAC1   CHD5    CHD7    CHKA    CHMP2B  CHST12  CHST15  CHSY1   CITED4  CNNM2   COL13A1 COL15A1 CPM CPSF7   CREBRF  CRIM1   CRKL    CSF1    CX3CL1  CYS1    DCDC2   DDX6    DGCR2   DHCR7   DICER1  DISP2   DLC1    DNAAF2  DNAJB1  DNAJB12 DNAJC5  DNMBP   DST DTX2    DYNLL2  EEA1    EEF1D   EGFL7   EHBP1   EIF4E2  EP400   EPS8L2  ERC1    ESF1    EXO5    EXOSC2  FAF2    FAM83G  FARP2   FBXO38  FBXO9   FEM1A   FIZ1    FKBP5   FLII    FNBP4   FOS FOXJ2   FOXO1   FOXQ1   FRY FYN GAS8    GFER    GINM1   GJB1    GNAO1   GOLM1   GSPT1   GSTO1   H6PD    HCFC1   HERC2   HIRIP3  HIVEP2  HNF1B   HPS6    HSPA1A  IGFBP3  IGFBP5  IKBKB   INAFM2  IQGAP2  IRF2BPL IRS2    ITPRIP  ITSN1   JMJD6   KCTD15  KDM2A   KDM3B   KDM4B   KIF16B  KIF1B   KL  KLF5    KLHL15  KMT2D   LARP1   LENG8   LIMCH1  LNX2    LRP6    LRRC8E  LRRFIP2 LZTS2   MAGI1   MAP1A   MAP3K10 MAP7D1  MAPT    MAST3   MCF2L   MDC1    METTL9  MFHAS1  MFSD8   MGA MICAL3  MICALL1 MIER1   MINK1   MLXIPL  MOCS3   MON1B   MPHOSPH8    MRPL40  MSL2    MUC1    MYH10   MYH14   NAP1L1  NAV1    NAV2    NBEA    NCOA3   NCOR2   NDUFB10 NEFH    NEU3    NF2 NFAT5   NFYA    NFYC    NKD2    NOC3L   NOL4    NOLC1   NPNT    NPTXR   NR2F2   NUDT3   NUFIP2  NUP50   NXF1    OPTN    OXNAD1  OXSR1   P3H4    PABPC4  PALM    PANK3   PAPOLA  PARD3   PCDHB2  PCDHB15 PCDHGB2 PCSK7   PDE4DIP PHF14   PHF8    PHLDB1  PHRF1   PIGR    PIK3R2  PITPNM1 PKD1    PLCB4   PLEC    PLEKHA6 PLEKHG3 PLS1    PLXNA1  PLXNA2  PML PPFIBP1 PPP3CA  PREPL   PRR14L  PRRC2C  PRUNE2  PSD3    PSIP1   PTPRA   QSOX1   RAB40C  RAB9B   RABEP1  RAI1    RALBP1  RALGAPB RBM14   RBM26   RELA    RERE    REV3L   REXO1   RFX6    RIMBP2  RNF139  RNF169  RNF26   RNF7    RORC    RRBP1   RRP1    RRP12   RSRC2   RWDD3   SAMD4B  SAP30   SCARA3  SERF2   SETD1B  SETD5   SF3B1   SH3GLB1 SH3PXD2A    SIPA1L1 SLC19A2 SLC30A6 SLC35A2 SLC39A3 SLC3A1  SLC4A1AP    SLC6A6  SLC9A8  SLK SLTM    SMAD7   SMARCA2 SMC1A   SMC3    SMCR8   SMG7    SMIM19  SNAPC2  SNRK    SOX13   SPECC1  SPPL3   SPRED1  SPTB    SPTBN1  SRF SRRM1   SWSAP1  SYDE2   TACC1   TAGAP   TAOK3   TEF TGFA    TGS1    THBD    THG1L   TICAM1  TIMMDC1 TIPARP  TJAP1   TJP1    TLE1    TLE3    TMED7-TICAM2    TMEM97  TNRC6A  TRAK1   TRAPPC5 TRIL    TRIOBP  TRMT10B TRPM3   TSEN54  TSHZ1   TSPAN13 TSPAN3  TTBK2   TTC28   TTC3    U2SURP  UBTF    UIMC1   UNC13A  UNC50   UNC80   UNC93B1 URI1    USP36   UTRN    VAPA    VDR VPS18   VPS26B  WDR6    WNK1    WWP2    ZADH2   ZC3H14  ZC3H15  ZC3HAV1 ZDHHC14 ZDHHC3  ZNF217  ZFP30   ZNF316  ZFP36L2 ZNF570  ZNF446  ZNF518A ZNF574  ZNF667  ZNF704  ZNF845  ZNF771  ZNF777  ZNF839  ZKSCAN1 ZSCAN21 ZSWIM6

KEGG pathway analysis of overlapping DMGs

eg.HFD_LIRKO_norWT_T2D <- bitr( intersect( unique(HFD_LIRKO_norWT_result$HumanOrtholog), unique(T2D_DMpeaks$name) ) , fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")

KEGG_HFD_LIRKO_norWT_T2D <- enrichKEGG(eg.HFD_LIRKO_norWT_T2D$ENTREZID,organism = "hsa",pAdjustMethod = "fdr", pvalueCutoff = 0.1,minGSSize = 3)

dotplot(KEGG_HFD_LIRKO_norWT_T2D, showCategory=20 )+theme(
                   panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 1),
                   axis.title.x=element_text(size=22, color = "black", hjust=0.5,family = "arial"),
                   axis.title.y=element_text(size=22, color = "black", vjust=0.4, angle=90,family = "arial"),
                   legend.title=element_text(size=15, color = "black"),legend.text = element_text(size = 20, color = "black",family = "arial"),
                   axis.text.x = element_text(size = 15,color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"))

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
emapplot(KEGG_HFD_LIRKO_norWT_T2D, vertex.label.font = 3)

Version Author Date
aa2d181 scottzijiezhang 2020-06-05

Intersect DMGs in LIRKO w/ HFD, DMGs in LIRKO and DMGs in T2D patients.

In above analysis, we noticed that overlap between LIRKO & T2D are not enriched for “T2D pathway” while overlap between LIRKO w/ HFD & T2D are enriched for “T2D” and “Insulin resistance” pathway.
Here I compare all three set of genes.

Vcommon_LIRKOhfd_LIRKO_T2D <- Venn(list("DMGs in LIRKO w/ HFD" = unique(HFD_LIRKO_norWT_result$HumanOrtholog),"DMGs in LIRKO" = unique(LIRKO_result$HumanOrtholog),"DMGs in T2D patient" = unique(T2D_DMpeaks$name) ) )
plot(Vcommon_LIRKOhfd_LIRKO_T2D,doWeights=TRUE)

Version Author Date
aa2d181 scottzijiezhang 2020-06-05

Compare enriched pathway (KEGG)

DMGall <- list("DMGs in LIRKO w/ HFD overlap T2D" = eg.HFD_LIRKO_norWT_T2D$ENTREZID ,"DMGs in LIRKO overlap T2D" = eg.LIRKO_T2D$ENTREZID )

ck <- compareCluster(geneCluster = DMGall, fun = "enrichKEGG", organism = "hsa", pAdjustMethod = "fdr", pvalueCutoff = 0.1, minGSSize = 3)
dotplot(ck,showCategory=30)+theme(
                   panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 1),
                   axis.title.x=element_text(size=22,  hjust=0.5,family = "arial"),
                   axis.title.y=element_text(size=22,  vjust=0.4, angle=90, ),
                   legend.title=element_text(size=15 ),legend.text = element_text(size = 20),
                   axis.text.x = element_text(size = 15,angle = -20, vjust = 0.3 ) ,axis.text.y = element_text(size = 15 ) )

Version Author Date
aa2d181 scottzijiezhang 2020-06-05
ckKEGG.df <- as.data.frame(ck)

ckKEGG.df$geneID <- unlist( lapply(strsplit(ckKEGG.df$geneID,"/"),function(x){ paste( bitr(x,fromType="ENTREZID", toType="SYMBOL",OrgDb="org.Hs.eg.db")$SYMBOL, collapse = "/")  }) )

ckGOtoShow <- ckKEGG.df[ which( ckKEGG.df$ID %in% c("hsa04935", "hsa04931", "hsa04660", "hsa04010", "hsa04662", "hsa04930", "hsa04935") ),c("Description","Cluster", "geneID")] 

DT::datatable(ckGOtoShow, rownames = FALSE)

Compare High-fat-diet LIRKO vs. High-fat-diet WT

load( "~/Rohit_T1D/mouse_islet/allSample_RADAR.RData")

HFD_LIRKO_sample <-   c( paste0("Ctl_HFD_", 1:4 ), paste0( "LIRKO_HFD_", 1:4 ) )

HFD_LIRKO_RADAR <- select( allSampleRADAR, HFD_LIRKO_sample )

HFD_LIRKO_RADAR <- normalizeLibrary( HFD_LIRKO_RADAR )
HFD_LIRKO_RADAR <- adjustExprLevel( HFD_LIRKO_RADAR )

variable( HFD_LIRKO_RADAR ) <- data.frame(genotype = c( rep( "Ctl_HFD_", 4 ), rep( "HFD_LIRKO", 4 ) ), 
                                      batch = c( 0,0,1,1,0,0,1,1 )
                                      )
HFD_LIRKO_RADAR <- filterBins( HFD_LIRKO_RADAR )
save(HFD_LIRKO_RADAR, file = "~/Rohit_T1D/mouse_islet/HFD_LIRKO_RADAR.RData")

Check confounding factors

library(RADAR)
load(  "~/Rohit_T1D/mouse_islet/HFD_LIRKO_RADAR.RData" )

plotPCAfromMatrix(HFD_LIRKO_RADAR@ip_adjExpr_filtered, variable(HFD_LIRKO_RADAR)$genotype  )+scale_color_discrete(name = "Genotype")

Version Author Date
e1b9592 scottzijiezhang 2020-03-30
plotPCAfromMatrix(HFD_LIRKO_RADAR@ip_adjExpr_filtered, as.character( c( 0,0,1,1,0,0,1,1 ) ) )+scale_color_discrete(name = "Batch")

Version Author Date
e1b9592 scottzijiezhang 2020-03-30

Samples are separated by genotype. Batch seems also contributed a bit to the variance. Therefore, we included batch as a covariate in this test.

DM tests with RADAR

HFD_LIRKO_RADAR <- diffIP_parallel(HFD_LIRKO_RADAR, thread = 20)
HFD_LIRKO_RADAR <- reportResult(HFD_LIRKO_RADAR, cutoff = 0.1, threads = 20)

save(HFD_LIRKO_RADAR, file = "~/Rohit_T1D/mouse_islet/HFD_LIRKO_RADAR.RData")
write.table(results(HFD_LIRKO_RADAR), file = "~/Rohit_T1D/mouse_islet/HFD_LIRKO_diffPeaks_FDR0.1.xls", sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)
load("~/Rohit_T1D/mouse_islet/HFD_LIRKO_RADAR.RData")
DT::datatable( results(HFD_LIRKO_RADAR) , rownames = FALSE )
There are 882 reported differential loci at FDR < 0.1 and logFoldChange > 0.5.

KEGG pathway analysis of DMG

eg.HFD_LIRKO <- bitr( unique(results(HFD_LIRKO_RADAR)$name), fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
There are 882 reported differential loci at FDR < 0.1 and logFoldChange > 0.5.
KEGG_HFD_LIRKO <- enrichKEGG(eg.HFD_LIRKO$ENTREZID,organism = "mmu",pAdjustMethod = "fdr", pvalueCutoff = 0.1,minGSSize = 3)

dotplot(KEGG_HFD_LIRKO)+theme(
                   panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 1),
                   axis.title.x=element_text(size=22, color = "black", hjust=0.5,family = "arial"),
                   axis.title.y=element_text(size=22, color = "black", vjust=0.4, angle=90,family = "arial"),
                   legend.title=element_text(size=15, color = "black"),legend.text = element_text(size = 20, color = "black",family = "arial"),
                   axis.text.x = element_text(size = 15,color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"))

Version Author Date
514bc99 scottzijiezhang 2020-05-08
241dfaa scottzijiezhang 2020-05-07

sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 17.10

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] grid      stats4    parallel  stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] org.Hs.eg.db_3.7.0        Vennerable_3.1.0.9000    
 [3] biomaRt_2.38.0            org.Mm.eg.db_3.7.0       
 [5] clusterProfiler_3.10.1    ggsci_2.9                
 [7] RADAR_0.2.3               qvalue_2.14.1            
 [9] RcppArmadillo_0.9.400.2.0 Rcpp_1.0.1               
[11] RColorBrewer_1.1-2        gplots_3.0.1.1           
[13] doParallel_1.0.14         iterators_1.0.10         
[15] foreach_1.4.4             ggplot2_3.1.1            
[17] Rsamtools_1.34.1          Biostrings_2.50.2        
[19] XVector_0.22.0            GenomicFeatures_1.34.8   
[21] AnnotationDbi_1.44.0      Biobase_2.42.0           
[23] GenomicRanges_1.34.0      GenomeInfoDb_1.18.2      
[25] IRanges_2.16.0            S4Vectors_0.20.1         
[27] BiocGenerics_0.28.0       Logolas_1.6.0            

loaded via a namespace (and not attached):
  [1] tidyselect_0.2.5            RSQLite_2.1.1              
  [3] htmlwidgets_1.3             BiocParallel_1.16.6        
  [5] munsell_0.5.0               codetools_0.2-16           
  [7] DT_0.5.1                    withr_2.1.2                
  [9] colorspace_1.4-1            GOSemSim_2.8.0             
 [11] knitr_1.22                  rstudioapi_0.10            
 [13] DOSE_3.8.2                  Guitar_1.20.1              
 [15] labeling_0.3                git2r_0.25.2               
 [17] exomePeak_2.16.0            urltools_1.7.3             
 [19] GenomeInfoDbData_1.2.0      polyclip_1.10-0            
 [21] bit64_0.9-7                 farver_1.1.0               
 [23] rprojroot_1.3-2             generics_0.0.2             
 [25] xfun_0.6                    R6_2.4.0                   
 [27] locfit_1.5-9.1              bitops_1.0-6               
 [29] fgsea_1.8.0                 gridGraphics_0.3-0         
 [31] DelayedArray_0.8.0          assertthat_0.2.1           
 [33] promises_1.0.1              scales_1.0.0               
 [35] pinfsc50_1.1.0              ggraph_1.0.2               
 [37] nnet_7.3-12                 enrichplot_1.2.0           
 [39] gtable_0.3.0                workflowr_1.3.0            
 [41] rlang_0.4.0                 genefilter_1.64.0          
 [43] splines_3.5.3               rtracklayer_1.42.2         
 [45] lazyeval_0.2.2              acepack_1.4.1              
 [47] broom_0.5.2                 europepmc_0.3              
 [49] checkmate_1.9.1             yaml_2.2.0                 
 [51] reshape2_1.4.3              crosstalk_1.0.0            
 [53] backports_1.1.4             httpuv_1.5.1               
 [55] Hmisc_4.2-0                 RBGL_1.58.2                
 [57] tools_3.5.3                 ggplotify_0.0.3            
 [59] gridBase_0.4-7              gamlss.data_5.1-3          
 [61] ggridges_0.5.1              gamlss_5.1-3               
 [63] plyr_1.8.4                  base64enc_0.1-3            
 [65] progress_1.2.0              zlibbioc_1.28.0            
 [67] purrr_0.3.2                 RCurl_1.95-4.12            
 [69] prettyunits_1.0.2           rpart_4.1-13               
 [71] viridis_0.5.1               cowplot_0.9.4              
 [73] SummarizedExperiment_1.12.0 ggrepel_0.8.0              
 [75] cluster_2.0.7-1             fs_1.3.0                   
 [77] magrittr_1.5                data.table_1.12.2          
 [79] DO.db_2.9                   triebeard_0.3.0            
 [81] SQUAREM_2017.10-1           whisker_0.3-2              
 [83] matrixStats_0.54.0          hms_0.4.2                  
 [85] mime_0.6                    evaluate_0.13              
 [87] xtable_1.8-4                XML_3.98-1.19              
 [89] gridExtra_2.3               MeRIPtools_0.1.8           
 [91] vcfR_1.8.0                  compiler_3.5.3             
 [93] tibble_2.1.1                KernSmooth_2.23-15         
 [95] crayon_1.3.4                htmltools_0.3.6            
 [97] mgcv_1.8-28                 later_0.8.0                
 [99] Formula_1.2-3               tidyr_0.8.3                
[101] geneplotter_1.60.0          DBI_1.0.0                  
[103] tweenr_1.0.1                MASS_7.3-51.4              
[105] Matrix_1.2-17               permute_0.9-5              
[107] gdata_2.18.0                igraph_1.2.4.1             
[109] pkgconfig_2.0.2             rvcheck_0.1.3              
[111] GenomicAlignments_1.18.1    foreign_0.8-71             
[113] xml2_1.2.0                  annotate_1.60.1            
[115] gamlss.dist_5.1-3           stringr_1.4.0              
[117] digest_0.6.18               vegan_2.5-4                
[119] QNB_1.1.11                  graph_1.60.0               
[121] rmarkdown_1.12              fastmatch_1.1-0            
[123] htmlTable_1.13.1            curl_3.3                   
[125] shiny_1.3.2                 gtools_3.8.1               
[127] nlme_3.1-137                jsonlite_1.6               
[129] viridisLite_0.3.0           BSgenome_1.50.0            
[131] pillar_1.3.1                lattice_0.20-38            
[133] httr_1.4.0                  survival_2.44-1.1          
[135] GO.db_3.7.0                 glue_1.3.1                 
[137] UpSetR_1.3.3                bit_1.1-14                 
[139] ggforce_0.2.2               stringi_1.4.3              
[141] blob_1.1.1                  DESeq2_1.22.2              
[143] latticeExtra_0.6-28         caTools_1.17.1.2           
[145] memoise_1.1.0               dplyr_0.8.0.1              
[147] ape_5.3