Last updated: 2021-03-17
Checks: 7 0
Knit directory: T1D_epitranscriptome/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190516)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version e704b45. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: analysis/.Rhistory
Ignored: analysis/figure/
Untracked files:
Untracked: data/m6A.batch.out.RData
Untracked: data/m6A.batchGender.out.RData
Unstaged changes:
Modified: .Rprofile
Modified: .gitignore
Modified: README.md
Modified: T1D_epitranscriptome.Rproj
Modified: _workflowr.yml
Modified: analysis/Human_betaCell_stim_QQQ.Rmd
Modified: analysis/NOD_mice_QQQ.Rmd
Modified: analysis/Stim_human_islets.Rmd
Modified: analysis/Stim_mouse_islets.Rmd
Modified: analysis/T1D_patient.Rmd
Modified: analysis/_site.yml
Modified: analysis/about.Rmd
Modified: analysis/coveragePlot.Rmd
Modified: analysis/index.Rmd
Modified: analysis/license.Rmd
Modified: code/README.md
Modified: data/README.md
Modified: output/README.md
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Stim_human_islets_RNAseq.Rmd
) and HTML (docs/Stim_human_islets_RNAseq.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | e704b45 | scottzijiezhang | 2021-03-17 | wflow_publish(“Stim_human_islets_RNAseq.Rmd”) |
html | 73c9f59 | scottzijiezhang | 2020-08-27 | Build site. |
html | 4879465 | scottzijiezhang | 2020-03-29 | Build site. |
Rmd | 4cbeca1 | scottzijiezhang | 2020-03-29 | wflow_publish(c(“analysis/Stim_human_islets_RNAseq.Rmd”, “analysis/Stim_human_islets.Rmd”, “analysis/T1D_patient.Rmd”)) |
html | 6b64f58 | scottzijiezhang | 2020-03-10 | Build site. |
Rmd | 32a9602 | scottzijiezhang | 2020-03-10 | wflow_publish(“analysis/Stim_human_islets_RNAseq.Rmd”) |
html | fc538cf | scottzijiezhang | 2020-03-10 | Build site. |
Rmd | d26010a | scottzijiezhang | 2020-03-10 | wflow_publish(c(“analysis/Stim_human_islets.Rmd”, “analysis/Stim_human_islets_RNAseq.Rmd”)) |
library(RADAR)
load( "~/Rohit_T1D/stim_Patient_islets/stim_patient_RADAR.RData")
geneCount <- round( geneExpression(stim_patient_RADAR) )
plotPCAfromMatrix(geneCount, variable(stim_patient_RADAR)$stim) +scale_color_discrete(name = "Treatment")
plotPCAfromMatrix(geneCount, c(rep("A",10),rep("B",12),rep("C",8)) ) + scale_color_discrete(name = "Batch")
plotPCAfromMatrix(geneCount, rep(c("F","M","M","M","M","F","M","M","M","M","F","F","M","M","M"),rep(2,15)) )+scale_color_discrete(name = "Gender")
plotPCAfromMatrix(geneCount, rep(c(62,20,24,45,61,40,52,41,21,51,57,42,57,42,62),rep(2,15)) )+scale_color_continuous(name = "Age")
Gene expression level PCA showed that samples are best separated by treatment. Gender is partially contributing to the variations. So we will do DE test with gender as covariate.
library(DESeq2)
dds <- DESeqDataSetFromMatrix( geneCount[rowMeans(geneCount)>10,],
colData = data.frame(treatment = variable(stim_patient_RADAR)$stim,
gender = rep(c("F","M","M","M","M","F","M","M","M","M","F","F","M","M","M") ),
row.names = samplenames(stim_patient_RADAR) ),
design = ~ treatment + gender
)
dds <- DESeq(dds)
res <- results( dds , contrast = c("treatment", "Stim", "Ctl") )
deseqRes <- data.frame(gene = rownames(res), log2FC = res$log2FoldChange, pvalue = res$pvalue, fdr = res$padj)
write.table( dplyr::filter(deseqRes, !is.na(pvalue) ), file = "~/Rohit_T1D/stim_Patient_islets/Stim_patient_diffExpr_DESeq2result.xls", sep = "\t", quote = F, row.names = F, col.names = T)
DE genes at FDR < 5%
deseqRes <- read.table("~/Rohit_T1D/stim_Patient_islets/Stim_patient_diffExpr_DESeq2result.xls", header = T)
DT::datatable(deseqRes[deseqRes$fdr<0.05,], rownames = F)
Valcano plot
library(ggplot2)
deseqRes$sig <- ifelse(deseqRes$fdr<0.05, "FDR<0.05", "Not Significant")
rownames(deseqRes) <- deseqRes$gene
DEgenes_DESeq <- deseqRes[which(abs(deseqRes$log2FC) > log2(1.5) & deseqRes$fdr < 0.05),]
DEgenes_DESeq <- DEgenes_DESeq[order(DEgenes_DESeq$pvalue, decreasing = F),]
label_gene <- as.character(DEgenes_DESeq$gene)[1:30]
p = ggplot2::ggplot(deseqRes, ggplot2::aes(log2FC, -log10(pvalue))) +
ggplot2::geom_point(ggplot2::aes(col = sig)) +
ggplot2::scale_color_manual(values = c("red", "darkgray")) +
ggplot2::ggtitle("Volcano Plot of DESeq2 analysis")+
ggplot2::scale_x_continuous(limits = c(-3.5,6))+
theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 0.75),
plot.title = element_text( size=22, hjust = 0.5),
axis.title.x=element_text(size=20, color = "black", hjust=0.5,family = "arial"),
axis.title.y=element_text(size=20, color="black", vjust=0.4, angle=90,family = "arial"),
legend.title=element_blank(),legend.text = element_text(size = 16, color = "black",family = "arial"),
axis.text.x = element_text(size = 15,color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"),
legend.position = c(0.2,0.85) )
p + ggrepel::geom_text_repel(data=deseqRes[label_gene, ], ggplot2::aes(label=rownames(deseqRes[label_gene, ]) ),point.padding = 0.3)
Version | Author | Date |
---|---|---|
fc538cf | scottzijiezhang | 2020-03-10 |
Volcano plot without gene tags.
p
Version | Author | Date |
---|---|---|
fc538cf | scottzijiezhang | 2020-03-10 |
Overlap with Lundberg et al. Overlap significantly up-regulated genes in stimulated patient islets with up-regulated genes in Lundberg et al. 2016 Diabetes.
OverlapGene <- intersect( as.character(DEgenes_DESeq$gene), c("HLA-E","IFITM1","CASP1","TLR3","IFIT3","BST2","IFIT1","MX1","CCL5","IFIT2","MNDA","TAP1","ISG15","STAT1","OAS1","GBP1","IL15","MET","CXCL10","TLR8","IL6","NOS2") )
ggplot2::ggplot(deseqRes, ggplot2::aes(log2FC, -log10(pvalue))) +
ggplot2::geom_point(ggplot2::aes(col = sig)) +
ggplot2::scale_color_manual(values = c("red", "darkgray")) +
ggplot2::ggtitle("Volcano Plot of DESeq2 analysis")+
ggplot2::scale_x_continuous(limits = c(-3.5,6))+
theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 0.75),
plot.title = element_text( size=22, hjust = 0.5),
axis.title.x=element_text(size=20, color = "black", hjust=0.5,family = "arial"),
axis.title.y=element_text(size=20, color="black", vjust=0.4, angle=90,family = "arial"),
legend.title=element_blank(),legend.text = element_text(size = 16, color = "black",family = "arial"),
axis.text.x = element_text(size = 15,color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"),
legend.position = c(0.2,0.85) ) +
ggrepel::geom_text_repel(data=deseqRes[OverlapGene, ], ggplot2::aes(label=rownames(deseqRes[OverlapGene, ]) ),point.padding = 0.2) +
geom_point(data=deseqRes[OverlapGene, ], aes( log2FC, -log10(pvalue) ), color = "dark blue" )
KEGG pathway enrichment
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
eg.RDM <- bitr(deseqRes[deseqRes$fdr<0.05,]$gene, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")
KEGG.RDM_res <- enrichKEGG(eg.RDM$ENTREZID,organism = "hsa",pAdjustMethod = "fdr", pvalueCutoff = 0.05,minGSSize = 3)
px <- pairwise_termsim(KEGG.RDM_res)
emapplot( px )
load( "~/Rohit_T1D/stim_Patient_islets/stim_EndoC_RADAR.RData")
geneCount_E <- round( geneExpression(stim_EndoC_RADAR) )
geneCount_E <- geneCount_E[rowMeans(geneCount_E)>10,]
plotPCAfromMatrix(geneCount_E, variable(stim_EndoC_RADAR)$stim) +scale_color_discrete(name = "Treatment")
dds_E <- DESeqDataSetFromMatrix( geneCount_E,
colData = data.frame(treatment = variable(stim_EndoC_RADAR)$stim,
row.names = samplenames(stim_EndoC_RADAR) ),
design = ~ treatment
)
dds_E <- DESeq(dds_E)
res_E <- results( dds_E , contrast = c("treatment", "Stim", "Ctl") )
deseqRes_E <- data.frame(gene = rownames(res_E), log2FC = res_E$log2FoldChange, pvalue = res_E$pvalue, fdr = res_E$padj)
write.table( dplyr::filter(deseqRes_E, !is.na(pvalue) ), file = "~/Rohit_T1D/stim_Patient_islets/Stim_EndoC_diffExpr_DESeq2result.xls", sep = "\t", quote = F, row.names = F, col.names = T)
DE genes at FDR < 5%
deseqRes_E <- read.table("~/Rohit_T1D/stim_Patient_islets/Stim_EndoC_diffExpr_DESeq2result.xls", header = T)
DT::datatable(deseqRes_E[deseqRes_E$fdr<0.05,], rownames = F)
Volcano plot
deseqRes_E$sig <- ifelse(deseqRes_E$fdr<0.05, "FDR<0.05", "Not Significant")
rownames(deseqRes_E) <- deseqRes_E$gene
DEgenes_DESeq_E <- deseqRes_E[which(abs(deseqRes_E$log2FC) > log2(1.5) & deseqRes_E$fdr < 0.05),]
DEgenes_DESeq_E <- DEgenes_DESeq_E[order(DEgenes_DESeq_E$pvalue, decreasing = F),]
label_gene <- as.character(DEgenes_DESeq_E$gene)[1:30]
pE = ggplot2::ggplot(deseqRes_E, ggplot2::aes(log2FC, -log10(pvalue))) +
ggplot2::geom_point(ggplot2::aes(col = sig)) +
ggplot2::scale_color_manual(values = c("red", "darkgray")) +
ggplot2::ggtitle("Volcano Plot of DESeq2 analysis")+
ggplot2::scale_x_continuous(limits = c(-3.5,6))+
theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 0.75),
plot.title = element_text( size=22, hjust = 0.5),
axis.title.x=element_text(size=20, color = "black", hjust=0.5,family = "arial"),
axis.title.y=element_text(size=20, color="black", vjust=0.4, angle=90,family = "arial"),
legend.title=element_blank(),legend.text = element_text(size = 16, color = "black",family = "arial"),
axis.text.x = element_text(size = 15,color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"),
legend.position = c(0.2,0.85) )
pE
Version | Author | Date |
---|---|---|
fc538cf | scottzijiezhang | 2020-03-10 |
Overlap with Lundberg et al. Overlap significantly up-regulated genes in EndoC with up-regulated genes in Lundberg et al. 2016 Diabetes.
OverlapGene_E <- intersect( as.character(DEgenes_DESeq_E$gene), c("HLA-E","IFITM1","CASP1","TLR3","IFIT3","BST2","IFIT1","MX1","CCL5","IFIT2","MNDA","TAP1","ISG15","STAT1","OAS1","GBP1","IL15","MET","CXCL10","TLR8","IL6","NOS2") )
ggplot2::ggplot(deseqRes_E, ggplot2::aes(log2FC, -log10(pvalue))) +
ggplot2::geom_point(ggplot2::aes(col = sig)) +
ggplot2::scale_color_manual(values = c("red", "darkgray")) +
ggplot2::ggtitle("Volcano Plot of DESeq2 analysis")+
ggplot2::scale_x_continuous(limits = c(-3.5,6))+
theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 0.75),
plot.title = element_text( size=22, hjust = 0.5),
axis.title.x=element_text(size=20, color = "black", hjust=0.5,family = "arial"),
axis.title.y=element_text(size=20, color="black", vjust=0.4, angle=90,family = "arial"),
legend.title=element_blank(),legend.text = element_text(size = 16, color = "black",family = "arial"),
axis.text.x = element_text(size = 15,color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"),
legend.position = c(0.2,0.85) ) +
ggrepel::geom_text_repel(data=deseqRes_E[OverlapGene_E, ], ggplot2::aes(label=rownames(deseqRes_E[OverlapGene_E, ]) ),point.padding = 0.2) +
geom_point(data=deseqRes_E[OverlapGene_E, ], aes( log2FC, -log10(pvalue) ), color = "dark blue" )
KEGG pathway enrichment
eg.RDM_E <- bitr(deseqRes_E[deseqRes_E$fdr < 0.05,]$gene, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")
KEGG.RDM_res_E <- enrichKEGG(eg.RDM_E$ENTREZID,organism = "hsa",pAdjustMethod = "fdr", pvalueCutoff = 0.05,minGSSize = 3)
KEGG_x <- pairwise_termsim(KEGG.RDM_res_E)
emapplot(KEGG_x)
Overlap of DE genes We compare the overlap of DE genes (FDR<5%) between islet and EndoC samples.
library(Vennerable)
Vcommon <- Venn(list("Stimu islets"=dplyr::filter(deseqRes,fdr <0.05)$gene,"Stim EndoC"=dplyr::filter(deseqRes_E,fdr<0.05)$gene ) )
plot(Vcommon,doWeights=TRUE)
Version | Author | Date |
---|---|---|
4879465 | scottzijiezhang | 2020-03-29 |
Common DE genes effect size correlation
library( ggpmisc )
CommonDEG <- intersect( as.character( dplyr::filter(deseqRes,fdr <0.05)$gene ), as.character( dplyr::filter(deseqRes_E,fdr<0.05)$gene ) )
CommonDEG_stat <- data.frame(gene = CommonDEG, patientFC = deseqRes[CommonDEG,"log2FC"], EndoCFC = deseqRes_E[CommonDEG,"log2FC"] )
ggplot(CommonDEG_stat, aes( x = patientFC, y = EndoCFC ) )+ geom_point()+ geom_hline(yintercept=0, linetype="dashed")+geom_vline(xintercept=0,linetype="dashed")+xlab("log2FC Stimulated islets")+ylab("log2FC Stimulated EndoC")+theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 0.7),
axis.title.x=element_text(size=22, color = "black", hjust=0.5,family = "arial"),
axis.title.y=element_text(size=22, color="black", vjust=0.4, angle=90,family = "arial"),
legend.position = c(0.85,0.95),legend.title=element_blank(),legend.text = element_text(size = 20, color = "black",family = "arial"),
axis.text.x = element_text(size = 15, color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"))+
stat_poly_eq(aes(label = paste(..rr.label..)), label.x.npc = "left", label.y.npc = 0.95, formula = y~x, parse = TRUE, size = 8)
Version | Author | Date |
---|---|---|
4879465 | scottzijiezhang | 2020-03-29 |
Common DE genes that are directionaly consistent
#write.table( CommonDEG_stat[ CommonDEG_stat$patientFC * CommonDEG_stat$EndoCFC > 0, ] , file = "~/Rohit_T1D/stim_Patient_islets/CommonDEG.xls", sep = "\t", quote = FALSE, row.names = FALSE, col.names = TRUE)
DT::datatable( CommonDEG_stat[ CommonDEG_stat$patientFC * CommonDEG_stat$EndoCFC > 0, ] )
KEGG pathway analysis of common DE genes that are directionally consistent
eg.PatDEG_EndoDEG_intersect <- bitr(CommonDEG_stat[ CommonDEG_stat$patientFC * CommonDEG_stat$EndoCFC > 0, "gene"], fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")
KEGG_PatDEG_EndoDEG_intersect <- enrichKEGG(eg.PatDEG_EndoDEG_intersect$ENTREZID,organism = "hsa",pAdjustMethod = "fdr", pvalueCutoff = 0.05,minGSSize = 3)
dotplot(KEGG_PatDEG_EndoDEG_intersect)+theme(
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black",size = 1),
axis.title.x=element_text(size=22, color = "black", hjust=0.5,family = "arial"),
axis.title.y=element_text(size=22, color = "black", vjust=0.4, angle=90,family = "arial"),
legend.title=element_text(size=15, color = "black"),legend.text = element_text(size = 20, color = "black",family = "arial"),
axis.text.x = element_text(size = 15,color = "black",family = "arial") ,axis.text.y = element_text(size = 15,color = "black",family = "arial"))
KEGG_inter <- pairwise_termsim(KEGG_PatDEG_EndoDEG_intersect)
emapplot(KEGG_inter)
T1D_diffPeak <- read.table( "~/Rohit_T1D/stim_Patient_islets/T1D_patient_diffPeaks_FDR0.05.xls", sep = "\t", header = TRUE)
VcommonAll <- Venn(list("Stimu islets"=dplyr::filter(deseqRes,fdr <0.05)$gene,"Stim EndoC"=dplyr::filter(deseqRes_E,fdr<0.05)$gene, "DMG in T1D islet" = unique( T1D_diffPeak$name ) ) )
plot(VcommonAll,doWeights=TRUE)
Version | Author | Date |
---|---|---|
4879465 | scottzijiezhang | 2020-03-29 |
Common DE genes that are directionally consistent
AllThreeIntersect <- intersect( intersect( dplyr::filter(deseqRes,fdr <0.05)$gene, dplyr::filter(deseqRes_E,fdr<0.05)$gene ), unique( T1D_diffPeak$name ) )
#write.table( CommonDEG_stat[ CommonDEG_stat$gene %in% AllThreeIntersect , ] , file = "~/Rohit_T1D/stim_Patient_islets/CommonDEGinStimIsletAndStimEndoC_intersect_DMGinT1D.xls", sep = "\t", quote = FALSE, row.names = FALSE, col.names = TRUE)
DT::datatable( CommonDEG_stat[ CommonDEG_stat$gene %in% AllThreeIntersect , ], rownames = FALSE )
sessionInfo()
R version 4.0.4 (2021-02-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=zh_CN.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=zh_CN.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=zh_CN.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=zh_CN.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] ggpmisc_0.3.8-1 Vennerable_3.1.0.9000 enrichplot_1.10.2
[4] org.Hs.eg.db_3.12.0 clusterProfiler_3.18.1 RADAR_0.2.4
[7] qvalue_2.22.0 RcppArmadillo_0.10.2.1.0 Rcpp_1.0.6
[10] RColorBrewer_1.1-2 gplots_3.1.1 doParallel_1.0.16
[13] iterators_1.0.13 foreach_1.5.1 ggplot2_3.3.3
[16] Rsamtools_2.6.0 Biostrings_2.58.0 XVector_0.30.0
[19] GenomicFeatures_1.42.1 AnnotationDbi_1.52.0 Biobase_2.50.0
[22] GenomicRanges_1.42.0 GenomeInfoDb_1.26.2 IRanges_2.24.1
[25] S4Vectors_0.28.1 BiocGenerics_0.36.0
loaded via a namespace (and not attached):
[1] shadowtext_0.0.7 fastmatch_1.1-0
[3] workflowr_1.6.2 BiocFileCache_1.14.0
[5] plyr_1.8.6 igraph_1.2.6
[7] splines_4.0.4 BiocParallel_1.24.1
[9] crosstalk_1.1.1 digest_0.6.27
[11] htmltools_0.5.1.1 GOSemSim_2.16.1
[13] viridis_0.5.1 GO.db_3.12.1
[15] fansi_0.4.2 magrittr_2.0.1
[17] memoise_2.0.0 annotate_1.68.0
[19] graphlayouts_0.7.1 matrixStats_0.58.0
[21] askpass_1.1 prettyunits_1.1.1
[23] colorspace_2.0-0 blob_1.2.1
[25] rappdirs_0.3.3 ggrepel_0.9.1
[27] xfun_0.21 dplyr_1.0.5
[29] crayon_1.4.1 RCurl_1.98-1.2
[31] jsonlite_1.7.2 graph_1.68.0
[33] scatterpie_0.1.5 genefilter_1.72.1
[35] survival_3.2-7 glue_1.4.2
[37] polyclip_1.10-0 gtable_0.3.0
[39] zlibbioc_1.36.0 DelayedArray_0.16.2
[41] scales_1.1.1 DOSE_3.16.0
[43] DBI_1.1.1 viridisLite_0.3.0
[45] xtable_1.8-4 progress_1.2.2
[47] bit_4.0.4 DT_0.17
[49] htmlwidgets_1.5.3 httr_1.4.2
[51] fgsea_1.16.0 ellipsis_0.3.1
[53] pkgconfig_2.0.3 XML_3.99-0.5
[55] farver_2.1.0 dbplyr_2.1.0
[57] locfit_1.5-9.4 utf8_1.1.4
[59] polynom_1.4-0 tidyselect_1.1.0
[61] labeling_0.4.2 rlang_0.4.10
[63] reshape2_1.4.4 later_1.1.0.1
[65] munsell_0.5.0 tools_4.0.4
[67] cachem_1.0.4 downloader_0.4
[69] generics_0.1.0 RSQLite_2.2.3
[71] evaluate_0.14 stringr_1.4.0
[73] fastmap_1.1.0 yaml_2.2.1
[75] knitr_1.31 bit64_4.0.5
[77] fs_1.5.0 tidygraph_1.2.0
[79] caTools_1.18.1 purrr_0.3.4
[81] ggraph_2.0.5 RBGL_1.66.0
[83] whisker_0.4 DO.db_2.9
[85] xml2_1.3.2 biomaRt_2.46.3
[87] compiler_4.0.4 curl_4.3
[89] tibble_3.1.0 tweenr_1.0.1
[91] geneplotter_1.68.0 stringi_1.5.3
[93] highr_0.8 lattice_0.20-41
[95] Matrix_1.3-2 vctrs_0.3.6
[97] pillar_1.5.1 lifecycle_1.0.0
[99] BiocManager_1.30.10 cowplot_1.1.1
[101] data.table_1.14.0 bitops_1.0-6
[103] httpuv_1.5.5 rtracklayer_1.50.0
[105] R6_2.5.0 promises_1.2.0.1
[107] KernSmooth_2.23-18 gridExtra_2.3
[109] codetools_0.2-18 MASS_7.3-53.1
[111] gtools_3.8.2 assertthat_0.2.1
[113] SummarizedExperiment_1.20.0 openssl_1.4.3
[115] DESeq2_1.30.1 rprojroot_2.0.2
[117] withr_2.4.1 GenomicAlignments_1.26.0
[119] GenomeInfoDbData_1.2.4 hms_1.0.0
[121] grid_4.0.4 tidyr_1.1.3
[123] rvcheck_0.1.8 rmarkdown_2.7
[125] MatrixGenerics_1.2.1 git2r_0.28.0
[127] ggforce_0.3.3